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B1 Algorithms

Teachers’ decision rule implies that if District d makes an o↵er to the teacher, the teacher’s

acceptance probability is given by

hd (x, c, d0) =
exp

⇣
Vd(x,c,d0)

�✏

⌘

exp
⇣

Vd(x,c,d0)
�✏

⌘
+
P

d02D\d od0 (x, c, d0) exp
⇣

Vd0 (x,c,d0)
�✏

⌘ . (1)

We assume that districts make decisions based on a simplified belief, given by

ehd (x, c, d0|w (x, c) , �w (x, c)) =
1

1 + exp (f (x, c, d0, wd, qd,�d))
, (2)

with f (·) = x⇣1 + ⇣2
c1 + c2

2
+ ⇣3

✓
wd � w (x, c)

�w(x,c)

◆
+ ⇣4qd + ⇣5e

�d + ⇣6�dc1

+ (1� I (d0 = 0)) [I (d 6= d0) (⇣7 + ⇣8x1) + ⇣9I (zd 6= zd0)] ,
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where w (x, c) and �w (x, c) are the mean and standard deviation of wages across all districts

for a teacher with (x, c) , i.e.,

w (x, c) ⌘ 1

D

X

d

wd (x, c;!d) (3)

�w(x,c) ⌘
s

1

D � 1

X

d

(wd (x, c;!d)� w (x, c))2. (4)

An equilibrium requires beliefs ehd (x, c, d0), and in particular the vector ⇣ and the wage

statistics
�
w (x, c) , �w(x,c)

 
x,c

, to be consistent with decisions made by teachers and districts.

B1.1 Estimation Algorithm

The estimation algorithm involves an outer loop searching for the parameter vector ⇥ and

an inner loop solving the model for each given ⇥. This inner loop does not require finding

the fixed point for all components in {⇣, w (·) , �w (·)}: Assuming that data were generated

from an equilibrium, {w (·)} and {�w (·)} can be derived directly from the observed district

wage schedules {!o
d}d, where the superscript o denotes “observed.” For estimation, one only

needs to find the fixed point for ⇣; the observed equilibrium wage statistics {wo (·) , �o
w (·)}

can be plugged directly into the belief function (2) . Given a parameter vector ⇥, the inner

loop of the estimation algorithm involves the following steps.

1. Search for ⇣⇤ (⇥)

(a) Guess ⇣, which, together with w
o (·) and �o

w (·), implies a belief
n
ehd (·|⇣, wo (·) , �o

w (·))
o

as defined in (2).

(b) Given ehd (·|⇣, wo (·) , �o
w (·)), solve for the optimal job o↵ers o

⇤
d (·;!o

d) under the

observed !o
d for each district d.

(c) Given the job o↵ers and the wages implied by {o⇤d (·;!o
d) ,!

o
d}d, calculate each

teacher’s acceptance probabilities hd (·) for each d, as in (1), and the distance���h (·)� eh (·|⇣, wo (·) , �o
w (·))

��� .

(d) Repeat Steps 1a-1c until
���h (·)� eh (·|⇣, wo (·) , �o

w (·))
��� is below a tolerance level;

the associated ⇣ is the consistent belief parameter vector ⇣⇤ (⇥).

2. Given job o↵ers {o⇤d (·;!o
d)}d under ehd (·|⇣⇤ (⇥) , wo (·) , �o

w (·)) and wages implied by

{!o
d} , each teacher chooses the most preferred among their received o↵ers. The implied

teacher-district matches will be compared with the observed matches in the outer loop.
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3. Given ehd (·|⇣⇤ (⇥) , wo (·) , �o
w (·)), each district makes optimal decisions on its wage

schedule !⇤
d (⇥) .1 The resulting {!⇤

d (⇥)}d will be compared with the observed {!o
d}d

in the outer loop.

B1.2 Solving for the Equilibrium

Both the teacher-specific wage statistics
��

w (x, c) , �w(x,c)

� 
x,c

and the wage rules {(!d1,!d2)}d
that govern these statistics are high-dimensional objects. However, notice that districts’

wages are given by

wd (x, c;!) =

8
><

>:

w if !1W
0
d (x) + !2 [�dc1 + (1� �d) c2] < w

w if !1W
0
d (x) + !2 [�dc1 + (1� �d) c2] > w

!1W
0
d (x) + !2 [�dc1 + (1� �d) c2] otherwise

, (5)

where the pre-reform wage schedule W 0
d (x) is a linear function of experience categories (x1)

and the MA dummy (x2). It follows that the mean wage is a linear function of the following

form governed by some parameter vector ✓1

ew (x, c) =

8
><

>:

w if
P

n ✓
1
1nI (x1 = n) + ✓

1
2x2 + ✓

1
3c1 + ✓

1
4c2 < w

w if
P

n ✓
1
1nI (x1 = n) + ✓

1
2x2 + ✓

1
3c1 + ✓

1
4c2 > w

P
n ✓

1
1nI (x1 = n) + ✓

1
2x2 + ✓

1
3c1 + ✓

1
4c2 otherwise.

(6)

Similarly, the cross-district wage standard deviation for a teacher will be the square root of

a quadratic function (Q) , governed by some parameter vector ✓2, and bounded from above

by the largest possible wage spread, i.e.,

e�w(x,c) = min
np

max {Q (x1, x2, c1, c2; ✓2) , 0}, w � w

o
. (7)

Instead of searching for fixed points of
n
{hd (x, c, d0)}x,c , (!d1,!d2)

o

d
, one can search for

parameter vectors ⇣, ✓1, and ✓
2 in (2) , (6) and (7) to guarantee equilibrium consistency.

Note that ⇣, ✓1, and ✓2 are not structural parameters; rather, they serve to summarize the

equilibrium under a given policy scenario and are policy dependent. We now describe the

algorithm we use to simulate the equilibrium outcomes, for a given policy environment.

1
We assume that changing a single district’s wage for Teacher i has a negligible e↵ect on wage statistics

(wo
(xi, ci) ,�o

w (xi, ci)), i.e., the mean and standard deviation of Teacher i’s wage across the 411 districts in

our sample.
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B1.2.1 Equilibrium Algorithm

We draw M economies, each with D districts and N teachers. All economies share the

same observable teacher and district characteristics as those in the data, but each economy

is assigned a di↵erent realization of wage-choice-specific shocks {{⌘d!}!}d, drawn from the

i.i.d. extreme value distribution, with the scaling parameter �⌘. The expected equilibrium

outcomes are calculated as the average outcomes across M economies. For each economy m,

we apply the following procedure.

1. Guess parameters ⇣, ✓1, and ✓2, which imply
n
ew (x, c) , e�w(x,c),

ehd

⇣
x, c, d0|ew (x, c) , e�w(x,c)

⌘o

from (2) , (6) and (7) .

2. Given
n
ehd

⇣
x, c, d0|ew (x, c) , e�w(x,c)

⌘o
, each district d chooses its optimal wage and o↵er

policies {!d, O (!d)} .

3. Given {!d, O (!d)}d, compute teacher acceptance probabilities hd (·) from their decision

rules (1), the mean wage w (x, c) based on (3), and standard deviation �w(x,c) based on

(4).

4. Calculate the distance between
n
ew (x, c) , e�w(x,c),

ehd

⇣
x, c, d0|ew (x, c) , e�w(x,c)

⌘o
and

�
w (x, c) , �w(x,c), hd

�
x, c, d0|

�
w (x, c) , �w(x,c)

�� 
.

5. Repeat Step 1 to Step 4 and search for {⇣⇤, ✓1⇤, ✓2⇤} that bring the distance in Step

4 below a tolerance level. The vector {⇣⇤, ✓1⇤, ✓2⇤} renders the consistent belief (2) .

Equilibrium outcomes in economy m consist of the decisions made by districts and

teachers under this consistent belief.

B2 Data Details

B2.1 Sample Construction

We construct our samples as follows. For estimation and empirical analysis, we focus on full-

time Grades 4-6 math teachers employed in Wisconsin school districts in 2014 (411 districts

and 6,625 individuals).2 We exclude 3 teachers from the sample, whose schools did not report

test scores. We also exclude 22 teachers with missing information on years of experience.

This leaves us with 6,600 teachers and 411 districts in the final estimation sample.

For the validation sample, we focus on 6,751 full-time Grades 4-6 math teachers employed in

2
Wisconsin had 424 school districts in 2014, 11 of which did not have any elementary school, and 2 of

which did not have any full-time Grades 4-6 math teachers.
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411 districts in 2010. We exclude 10 teachers with missing information on years of experience.

This leaves us with 6,741 teachers and 411 districts in the final validation sample.

B2.2 Teacher’s Previous District

Our model requires identifying the district where each teacher was working at the beginning

of the model period (di0). For the estimation sample, which is based on 2014 data, we define

di0 as follows. If the teacher never moved or moved only once between 2011 and 2014, di0

is the district where she was employed in 2011. If a teacher moved more than once between

2011 and 2014, we set di0 to be the last employer she worked for before 2014. For example,

if teacher i worked in District A in 2011 and 2012, and District C in 2013 and 2014, then

di0 = C. If teacher i worked in District A in 2011 and 2012, in District B in 2013, and in

District C in 2014, then di0 = B.

For the validation sample, based on data from 2010, we obtain teachers’ di0 following the

same procedure as above, using a teacher’s employment history between 2007 and 2010.

B2.3 Teacher E↵ectiveness

Students were tested on math and language in the Wisconsin Knowledge and Concepts

Examination (WKCE, 2007-2014) and Badger test (2015-2016); we focus on their math

scores. The WKCE was administered in November of each school year, whereas the Badger

test was administered in March. To account for this change, for the years 2007–2014 we

assign each student a score equal to the average of the standardized scores for the current

and the following year. The test score data also include individual characteristics of test

takers, such as gender, race and ethnicity, socioeconomic (SES) status, migration status,

English-learner status, and disability status.

Our data allow us to link students and teachers up to the school-grade level, rather than

the classroom level. To account for this data structure, we estimate two student achievement

models and derive teacher e↵ectiveness measures from each of them. In the following, we

first describe the achievement model used in our empirical analysis, and its estimation and

identification. The distribution of e↵ectiveness measures estimated with this achievement

model is summarized in Tables B8, B9 and Figure B3. Next, we describe the alternative

model, and its estimation and identification. Finally, we show that the e↵ectiveness measures

we obtain from both models are strongly correlated and that our auxiliary models used in

our structural estimation are robust to the choice of e↵ectiveness measures.
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B2.3.1 Achievement Model 1 (Main)

The e↵ectiveness measures used in our empirical analysis are estimated using the following

achievement model:

Akt = �Z
s
kt +

X

i:SGkt=SGT
it

2X

n=1

I (⌧k = n) (⇢nxit + vin) + "kt (8)

= �Z
s
kt +

X

i:SGkt=SGT
it

2X

n=1

I (⌧k = n) ⇢nxit + 'kt (9)

where Akt is achievement (measured as the standardized Math test score) of student k in

year t. The vector Z
s
kt contains the following: a cubic polynomial of previous year’s test

scores, interacted with grade fixed e↵ects; a cubic polynomial of previous year’s average test

scores for k’s cohort in the school, interacted with grade fixed e↵ects; a set of student charac-

teristics, including gender, race and ethnicity, disability status, English-language status, and

socioeconomic status; the same average characteristics for student k’s cohort; cohort size;

grade-by-school fixed e↵ects; and year fixed e↵ects. The variable "kt is an i.i.d. unobservable

component of achievement, idiosyncratic to each student and year. SGkt (SGT
it) denotes the

school-grade of student k (teacher i) in year t. The variable ⌧k equals 1 for low-achieving

students and 2 for high-achieving ones; we consider a student to be low-achieving if their

test score in the previous year was below the grade-specific median in the state, and high-

achieving otherwise. The contribution of teacher i to the achievement of a student of type

n 2 {1, 2} is ⇢nxit + vin, where xit denotes i’s education and experience in year t and vin is

the part unexplained by xit.

The achievement model in (8) assumes that all teachers in a given school-grade contribute

to the achievement of all students in the same school-grade. We make this choice to be able

to allow xit to directly enter teacher e↵ectiveness (since experience has been shown to a↵ect

teacher e↵ectiveness (Wiswall 2013), especially in the first years of a teacher’s career (Rocko↵

2004)), even if we do not observe all the teacher-student classroom links in the data. Model

(8) allows us to identify the component of teacher e↵ectiveness that depends on a teacher’s

experience and education.

Constructing our measures of e↵ectiveness (ci1, ci2) requires estimating vin and ⇢n for

n 2 {1, 2}. We make the following two assumptions:

A1. "kt is i.i.d. with mean 0 and variance �2
" .

A2. Cov("kt, vin) = 0 8k, i, t, n : SGT
it = SGkt. This implies that there is no sorting on

unobservables of teachers across school-grades within a district. Although there is no direct
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test of this assumption, in Section B3.3 we combine the approaches of Chetty et al. (2014)

and Rothstein (2010) and we do not find evidence of non-random sorting.

Estimation Procedure: Model 1

1. Given A1 and A2, we estimate � and ⇢n via OLS on equation (8), to obtain �̂ and ⇢̂n.

2. With the estimated �̂ and ⇢̂n, we can then estimate vin using an empirical Bayes

estimator similar to the one of Kane and Staiger (2008) which we adapt to take into

account the structure of our data.

(a) Let

b'kt = Akt � �̂Z
s
kt �

X

i:SGkt=SGT
it

2X

n=1

⇢̂nxitI(⌧k = n). (10)

The quantity b'kt is an estimate for 'kt, i.e.,

'kt ⌘
X

i0:SGkt=SGT
i0t

2X

n=1

vi0nI(⌧k = n) + "kt.

Let KSGT
itn

be the number of achievement type-n students in the school-grade that

i belongs to. For each teacher i we define, for n 2 {1, 2}

bvint =
1

KSGT
itn

X

k:SGkt=SGT
it

b'ktI (⌧k = n) (11)

which is an estimate of

X

i0:SGT
i0t=SGT

it

vi0n +
1

KSGT
itn

X

k:SGkt=SGT
it

"kt.

This quantity corresponds to the average test score residuals of type-n students

in teacher i’s school-grade in year t, conditional on observables Zs
kt and the char-

acteristics x of all teachers in the same school-grade in t.

(b) We form a weighted average of the residuals {bvint}t by weighting each bvint by

$int =
K

SGT
itnP

t KSGT
itn

, so that residuals corresponding to more observations receive

more weight:

v̄in =
X

t

$intbvint (12)
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Note that assumption A1 implies

E(v̄in) = vin +
X

t

$int

X

i0 6=i:SGT
i0t=SGT

it

vi0n

Taking the limit of this expectation as t approaches infinity yields

lim
t!1

E(v̄in) = vin + lim
t!1

X

t

$int

X

i0 6=i:SGT
i0t=SGT

it

vi0n

It follows that a requirement for the estimator v̄0in to be asymptotically unbiased

is that limt!1
P

t$int

P
i0 6=i:SGT

i0t=SGT
it
vi0n = 0. In words, the weighted sum of the

e↵ects of all teachers in i’s school-grade over time has to approach 0 as the number

of periods grows large. This requirement is met because 1) the teacher e↵ect vin

is defined as a residual component of standardized test scores conditioning on

grade-by-school fixed e↵ects (which implies that, across time, the mean of vin is

zero within each school-grade) and 2) Assumption A2 guarantees that there is no

sorting of teachers on unobservables across school-grades over time.

(c) Armed with v̄in, we can construct the empirical Bayes estimator of vin by mul-

tiplying v̄in by the shrinkage factor, a measure of the reliability of the estimator

defined as the ratio between the estimated variance of the quantity to be esti-

mated, �̂vn = V ar(vin), and the variance of the estimator:

v̂in = v̄in

✓
b�2
vn

V ar(v̄in)

◆
,

where, given assumptions A1 and A2, we can estimate �̂2
vn as

b�2
vn =

Cov(bvint, bvint�1)

JSGT
it,t�1

and JSGT
it,t�1

=
P

i0 I(SG
T
i0t = SG

T
it)I(SG

T
i0t�1 = SG

T
it�1) is the number of teachers

who are in the same school-grade as i in both t and t� 1.

Identification: Model 1 The identification of teacher e↵ects vin leverages teacher turnover

across school-grades over time. Our identifying assumption is that turnover of teachers across

school-grades, within a district, is unrelated to vin (Assumption A2). Importantly, this as-

sumption allows for the endogenous sorting of teachers across districts based on vi1 and vi2,

as is the case in our model. In the estimation of vin, this type of sorting is accounted for by
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the school-grade fixed e↵ects included in Z
s
kt.

Teacher turnover across school-grades allows us to identify vin from v̄in for all i and n. In

particular, we can stack all the equations (12) for all I teachers and n = 1, 2, forming a system

of 2I equations (where I is the total number of teachers) in 2I unknowns ({vin}i,n2{1,2}).
Identification is achieved if the rank condition of the system is satisfied, i.e., if the coe�cient

matrix of the system is full-rank.

In practice, this requires that the set {i0 : SGT
i0t = SG

T
it8t} is empty for all i, which

means that there are no two teachers who teach the same school-grade in all t. When this

is the case, the system (and the vin for all i and n) is perfectly identified. In our data,

{i0 : SGT
i0t = SG

T
it8t} is empty for 75% of teachers, for whom we can precisely estimate

(vi1, vi2) . For the remaining 25% of teachers, {i0 := SG
T
i0t = SG

T
it8t} is non-empty, and our

estimated vin is the average of vi0n for i0 : SGT
i0t = SG

T
it8t.

B2.3.2 Achievement Model 2 (Alternative)

An alternative model would feature the assumption that each teacher contributes only to the

achievement of the students in her classroom, while also assuming that teacher e↵ectiveness is

fixed over time. These assumptions have been used extensively in the value-added literature

(e.g. Rocko↵, 2004; Aaronson et al., 2007; Kane and Staiger, 2008).3 The achievement model

in this case would be:

Akt = �Z
s
kt +

2X

n=1

I (⌧k = n) vi(kt)n + "kt (13)

= �Z
s
kt + 'kt (14)

where i(kt) denotes student k’s teacher in year t, i.e., k is in teacher i’s classroom in year t.

The contribution of teacher i to the achievement of a student of type n 2 {1, 2} is simply

vin. To estimate this quantity, we add the following assumption to A1 and A2:

A3. The variable jint = Kint/KSGT
itn

is i.i.d. with mean 1/JSGT
itn
, where Kint is the number

of students of type n in the classroom of teacher i in year t and JSGT
it
is the number of

teachers in school-grade SG
T
it in t. Furthermore, Cov(jint, vi0n) = 0 8i, i0, t. That is, class

size is unrelated to teacher e↵ectiveness within each school-grade.

Estimation: Model 2 With A1-A3, we can adapt the estimation procedure as follows.

1. We estimate � via OLS on equation (13) to obtain b�.
3
Besides assuming that teacher e↵ectiveness is fixed over time, these studies assume that teacher e↵ec-

tiveness is one-dimensional, rather than student-type-specific.
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2. We construct

b'0
kt = Akt � �̂Z

s
kt (15)

which is an estimate for
P2

n=1 vi(kt)nI(⌧k = n) + "kt. For each teacher i, we define, for

n 2 {1, 2}

bv0int=
1

KSGT
itn

X

k:SGkt=SGT
it

b'0
ktI (⌧k = n) (16)

which is an estimate of
X

i0:SGT
it=SGT

i0t

ji0ntvi0n +
1

KSGT
itn

X

k:SGkt=SGT
it

"kt (17)

3. We form a weighted average of {bv0int}t, with the same weights $int as before:

v̄
0
in =

X

t

$intbv0int

Assumption A1. implies

E(v̄0in) = vin

X

t

$int

JSGT
it

+
X

t

$int

JSGT
it

X

i0:SGT
it=SGT

i0t

vi0n

Taking the limit of this expectation as t approaches infinity implies

lim
t!1

E(v̄0in) = vin

X

t

$int

JSGT
it

+ lim
t!1

X

t

$int

JSGT
it

X

i0:SGT
it=SGT

i0t

vi0n

It follows that the estimator

¯̄v0in =
1P

t
$int
J
SGT

it

v̄
0
in (18)

is asymptotically unbiased if limt!1
P

t
$int
J
SGT

it

P
i0:SGT

it=SGT
i0t
vi0n = 0. As before, this

requirement implies that the weighted average of the e↵ects of all teachers in i’s school-

grade over time has to approach 0 as the number of periods grows large. Assumption

A2 and the fact that we are conditioning on school-grade fixed e↵ects guarantees that

this is the case asymptotically.

4. Finally, we construct the empirical Bayes estimator for vin as

v̂
0
in = ¯̄v0in

✓
b�20
vn

V ar(¯̄v0in)

◆
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Table B1: Correlation of Teacher E↵ectiveness between Model 1 and Model 2

Estimation Sample (2014) Validation Sample (2010)

experience corr(ci1, v̂
0
i1) corr(ci2, v̂

0
i2) corr(ci1, v̂

0
i1) corr(ci2, v̂

0
i2)

= 0 0.91 0.98 0.86 0.90

2 [1, 2] 0.85 0.87 0.86 0.90

2 [3, 4] 0.88 0.93 0.88 0.91

2 [5, 9] 0.85 0.91 0.85 0.87

2 [10, 14] 0.85 0.86 0.86 0.88

� 15 0.86 0.87 0.84 0.86

and we can estimate the variance of vin, b�20
vn, as

b�20
vn = JSGT

it
JSGT

it�1

Cov(bv0int, bv0int�1)

JSGT
it,t�1

Identification: Model 2 The identification of this alternative model also relies on within-

district school-grade turnover as in Model 1. Equation (18) represents a system of 2I equa-

tions (where I is the total number of teachers) in 2I unknowns, where the unknowns are

{vin}i,n2{1,2}. Teacher e↵ectiveness vin is perfectly identified for teachers for whom there are

at least two periods t and t
0 with SG

T
it 6= SG

T
it0 .

B2.3.3 Teacher E↵ectiveness: Model 1 vs Model 2

Correlation of Teacher E↵ectiveness Measures Table B1 displays the correlations be-

tween (ci1, ci2), the measures of teacher e↵ectiveness we use in our preferred model (Model 1),

and (v̂0i1, v̂
0
i2), estimates of teacher e↵ectiveness obtained with the alternative model (Model

2). We report these for both the estimation sample (2014) and the validation sample (2010).

Teacher e↵ectiveness measures estimated from the two models are highly correlated.

Inferred O↵er Sets As discussed in the identification section of the paper, an important

step of our estimation is to infer subsets of the o↵ers received by each teacher from the

observed teacher-district matches (we denote these as Os
i ). To show that the model estimates

are robust to using (v̂0i1, v̂
0
i2) in place of (ci1, ci2), we re-constructed the inferred o↵er (sub)sets

using (v̂0i1, v̂
0
i2), denoted by eOs

i . Comparing O
s
i with eOs

i for each of the 6,600 teachers in our

estimation sample, we find that 1) O
s
i = eOs

i for 27% of teachers, 2) O
s
i � eOs

i for 23% of

teachers, 3) Os
i ⇢ eOs

i for 21% of teachers, and 4) for the rest 28% of teachers, there are some

districts in O
s
i but not in eOs

i and some districts in eOs
i but not in O

s
i . For the robustness of
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Table B2: OLS of Teacher-District Match

Aux 1a Aux 1b

Achievement Model 1 Model 2 Model 1 Model 2

wage 0.002 (0.0002) 0.001 (0.0001) -0.000005 (0.000002) -0.000005 (0.000002)

e
�d -0.004 (0.009) -0.003 (0.005) -0.0001 (0.0001) -0.0002 (0.0001)

c1⇥�d 0.52 (0.29) 0.32 (0.19) -0.02 (0.006) -0.02 (0.015)

I (d 6= d0) -0.72 (0.02) -0.73 (0.02) -0.80 (0.01) -0.80 (0.01)

I (d 6= d0)⇥ x1 -0.008 (0.001) -0.008 (0.001) -0.008 (0.0005) -0.008 (0.0005)

I (zd 6= zd0) -0.06 (0.006) -0.06 (0.005) -0.0006 (0.0001) -0.0006 (0.0001)

qd : urban 0.01 (0.002) 0.01 (0.002) 0.003 (0.0002) 0.003 (0.0002)

qd : suburban 0.01 (0.002) 0.01 (0.002) 0.001 (0.0001) 0.001 (0.0001)

qd : large metro 0.11 (0.03) 0.09 (0.02) 0.01 (0.002) 0.01 (0.002)

# Obs 57,068 60630 2,712,600

Standard errors are in parentheses.

teacher preferences under O
s
i in place of eOs

i , case 1) is ideal, and cases 2) and 3) are not

concerning, because we only need subsets of o↵ers to infer teacher preferences Fox (2007).

These three cases account for 72% of teachers.

Auxiliary Models A key source of identification comes from our auxiliary models Aux

1a and Aux 1b that characterize teacher-district matches via regressions,

yid = �
m
1 w (xi, ci|!d)+ I (d0i > 0)

"
I (d 6= d0i) xi�

m
2

+�m
3 I (zd 6= zd0i)

#
+ qd�

m
4 + �

m
5 e

�d + �
m
6 c1i�d+ i+ "

m
id.

In Aux 1a, i’s are all the teachers whose inferred subsets of o↵ers Os
i contain more than one

district, and an observation (i, d) is a teacher-district pair in these inferred subsets. In Aux

1b, an observation is any teacher-district pair, with I ⇥D total observations.

In Table B2, we compare Aux 1a and Aux 1b when a teacher is characterized by (x, c)

(Model 1) against their counterparts when a teacher is characterized by (x, v̂0) (Model 2).

Between the two cases, regression coe�cients in Aux 1a are very similar, and those in Aux

1b are almost identical.

B2.3.4 Teacher E↵ectiveness: Two-Dimensional vs One-Dimensional

To check whether allowing teacher e↵ectiveness to vary by student type provides gains in

terms of explaining the overall variation in test scores, we estimate a counterpart of Model

12



Table B3: Sum of squared test score residuals under (c1, c2) and under c

E↵ectiveness measure c (c1, c2) % di↵erence
Student type
all students 0.1680 0.1370 22.61%
⌧k = 1 0.1922 0.1552 23.87%
⌧k = 2 0.1438 0.1189 20.97%

(8) with one-dimensional rather than two-dimensional teacher e↵ectiveness and compare it

with Model (8). Table B3 compares the average sum of squared test score residuals '̂kt, by

student type, obtained from each model. Our two-dimensional teacher e↵ectiveness model

explains approximately 20% more variation in test scores compared to its one-dimensional

e↵ectiveness counterpart.

B2.3.5 Teacher E↵ectiveness: Race

Previous studies suggest that the match between the teacher’s race and the student’s race

can matter for achievement. In comparison, we focus on teachers’ comparative advantages

in teaching students with di↵erent prior achievement types. We make this choice for two

reasons. First, as shown in Table B4, if we add teacher race and the interaction of teacher and

student race to our achievement model (student race is already included in our achievement

model), almost none of the added terms are significant. Second, if we add a teacher’s race and

gender and their interactions with the district’s racial and gender composition of students

to our Aux 1a (Column 1 of Table 2 in the main text), the R2 is barely improved (from 0.68

to 0.681).

B2.4 Wage Schedules

B2.4.1 Pre-Reform Wage Schedules

We obtain W
0
d (xi) as the predicted values from the following regression, estimated using

data from 2007 to 2011:

w
0
it = �

0
d + Expit�

e
g(i) +MAit�

m
g(i) + "it, (19)

where i and t refer to teacher and year, respectively; w0
it is the wage of teacher i in year

t; Expit is a vector of indicators for six classes of years of experience: 0, [1, 2], [3, 4], [5, 9],

[10, 14], and [15,+1); and MAit is an indicator for having a Master’s degree (MA) or a

13



Table B4: Estimates of achievement model in equation (13), obtained controlling for teachers’
(T) and students’ (S) race/ethnicity indicators and their interactions

⌧ = 1 ⌧ = 2
(1) (2)

Black S -0.056⇤⇤⇤ -0.067⇤⇤⇤

(0.003) (0.003)

Hisp S -0.007⇤⇤ -0.022⇤⇤⇤

(0.003) (0.003)

Asian S 0.053⇤⇤⇤ 0.081⇤⇤⇤

(0.004) (0.004)

Black T -0.001 0.0001
(0.005) (0.005)

Black T * Black S -0.008 -0.019⇤

(0.006) (0.010)

Hisp T -0.010⇤ -0.006
(0.005) (0.005)

Hisp T * Hisp S 0.007 0.008
(0.007) (0.009)

Asian T 0.003 0.004
(0.007) (0.008)

Asian T * Asian S 0.015 0.022
(0.017) (0.016)

Observations 3,360,517 3,635,942

higher degree. The parameter �0 can be interpreted as the average wages for teachers with

zero experience and without a MA; with �eg(i) normalized to 0 for those with zero experience,

�
e
g(i) is the average wage premium for teachers in each of the higher experience category,

relative to those with zero experience with the same education; and �m is the wage premium

for teachers who have a MA.

We estimate the intercept �0d separately for each district. Trading o↵ the accuracy of our

wage schedules with power, we estimate the coe�cients �e and �
m by groups of districts,

defined as follows:

1. For the 35 large districts (i.e., those with at least 10 teachers in each experience and

education category), each group corresponds to a district.

14



2. For the remaining 356 districts, we construct groups based on the similarity in their

salary schedules. To do so, we proceed as follows.

(a) For each district, we calculate the following summary statistics for their salary

schedules: (i) wages for teachers with 0 years of experience and MAit = 0 (i.e.,

the lowest possible wage category); (ii) wages for teachers with over 15 years

of experience and MAit = 0 (i.e., the highest possible wage category for those

without MA); (iii) average salary di↵erence between a teacher with more than 15

years of experience and a MA, and one with the same experience and no MA.

(b) We check whether each district is above or below the median of the cross-districts

distribution for each of the three statistics.

(c) We form eight groups based on the statistics (i), and (ii), and (iii), and assign

each district to a group as follows:

Group (i) (ii) (iii)

1 �median �median �median

2 �median �median <median

3 �median <median �median

4 <median �median �median

5 <median <median �median

6 <median �median <median

7 �median <median <median

8 <median <median <median

Table B5 summaries the point estimates from Equation (19). In particular, it reports the

cross-district means and standard deviations of the estimated vectors �. Figure B1 shows

a binned scatter plot of W 0
d (xi) and data wage w

0
it in 2010. The former predicts the latter

remarkably well, with a correlation coe�cient of 0.93 (significant at 1 percent).

B2.4.2 Districts’ Choice Set of Wage Schedules

A district’s wage rule is given by

wd (x, c|!) = max
�
min

�
!1W

0
d (x) + !2 (�dc1 + (1� �d) c2) , w

 
, w
 
. (20)

A district chooses (!1,!2) from a discrete set ⌦, the grid points of which are chosen as

follows.
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Table B5: Cross-district Summary of Pre-Reform Wage Schedules

Cross-district Mean Cross-district Std Dev.

�
0

34,686.8 3,286.1

�
e: [1, 2] 1,719.2 598.3

[3, 4] 3,939.1 1,103.3

[5, 9] 8,227.8 1,536.6

[10, 14] 14,644.0 2,348.5

�15 21,235.4 3,063.4

�
m
(MA) 7,008.5 2,456.6

Figure B1: Relationship between W
0
d (xi) and w

0
it

correlation = .93

40

50

60

70

80

Wid
0

40 50 60 70 80
wit

0

Note: Binned scatterplot of W 0
d (xi) and w0

it using wage data from 2010.
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1. We start by estimating the parameters (e!d1, e!d2) � 0 separately for each district from

wi = e!d1W
0
d (xi) + e!d2TC (ci,�d) + "

w
i , for i : d (i) = d

where wi is the observed 2014 wage for teacher i working in district d (i : d (i) = d),

W
0
d (xi) is defined as in Section B2.4.1, and teacher contribution TC (ci,�d) is given by

TC (ci,�d) = �dci1 + (1� �d) ci2.

2. Based on the estimated {(e!d1, e!d2)}d , we choose a set of equally spaced grid points

that provides a good coverage of the empirical distribution in the data:

⌦o = {0.9, 0.95, 1, 1.05, 1.1}⇥ {0, 10, 30, 50, 75, 100, 200} .

3. We assign each district the wage schedule (!o
d1,!

o
d2) 2 ⌦o that best summarizes the

distribution of teacher wages in that district {i : d(i) = d}, i.e.,

(!o
d1,!

o
d2) = arg max

(!1,!2)2⌦o

X

i:d(i)=d

(wi � wd (xi, ci;!))
2
,

s.t. wd (xi, ci;!) =

8
><

>:

w if !1W
0
d (xi) + !2TC (ci,�d) < w

w if !1W
0
d (xi) + !2TC (ci,�d) > w

!1W
0
d (xi) + !2TC (ci,�d) otherwise

,

where w (w) is 0.3 standard deviations below (0.2 standard deviations above) the

observed 1st (99th) wage percentile in the sample.

• The (!o
d1,!

o
d2) selected with this procedure predicts teachers’ actual salaries quite

well: 1) the absolute percentage deviation of predicted wages from actual wages in

2014, i.e.,
���1� wd(xi,ci;!)

wi

��� , is less than 10% for 95% of teachers in our sample; and

2) regressing wi on wd (xi, ci;!) yields a slope coe�cient of 0.98 (with a standard

error of 0.001) and an R2 of 0.99.

4. Finally, we expand the grid range to allow for the possibility that district choices may

go out of the empirical range in counterfactual scenarios. The choice set in the model

is given by

⌦ = {0.9, 0.95, 1, 1.05, 1.1, 1.15}⇥ {0, 10, 30, 50, 75, 100, 200, 225} .

17



Figure B2: Relationship between deviations of true wages from wd (x, c|!), obtained using
rules (20) and (21)

Note: Binned scatterplot of the di↵erence between true 2014 teacher wages and wd (x, c|!), calculated using

(20) (vertical axis) and (21) (horizontal axis).

where both !1 = 1.15 and !2 = 225 are outside of ⌦o.

B2.4.3 An Alternative Wage Rule with Three !’s

We have also tried to allow for a more flexible alternative wage schedule as follows

wd (x, c|!) = max
�
min

�
!1W

0
d (x) + !2�dc1 + !3 (1� �d) c2, w

 
, w
 
. (21)

Wage rule (20) we use in the paper is a special case of (21) with !2 = !3. We repeat the

exercise as in Section B2.4.2, but under the three-! specification (21) . This procedure yields

the triplet (!0
d1,!

0
d2,!

0
d3) that best summarizes the observed distribution of teacher wages in

each district d. Figure B2 compares the predicted wage under rule (20) and that under rule

(21). The two predicted wages are nearly indistinguishable from each other, indicating the

absence of large predictive gains associated with the use of (21) instead of (20).

B3 Across-District vs Within-District Variation

In our model we abstract from within-district competition for teachers, focusing on compe-

tition across districts. Here we show that cross-district variation clearly dominates within-

district, cross-school variation in terms of both teacher wages and the share of low-achieving

students.
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Table B6: Variation in salaries across and within districts, 2013-2016

Specification sqrt(MSE) R
2 �sqrt(MSE) from Baseline

Baseline: Experience, Education, c1,c2 6,856 0.69 –

+ District FE 4,711 0.86 31.3%

+ School FE 4,523 0.87 34.0%

B3.1 Wages

Table B6 shows the adjusted R2 and the root mean-squared error (MSE) of a regression of

post-Act 10 salaries on c1, c2, experience and education (first row). It then shows how the

R2 and MSE change as we sequentially add district fixed e↵ects (second row) and school

fixed e↵ects (third row). Adding district fixed e↵ects reduces the root MSE by 31.3%; this

implies that di↵erences across districts explain 31.3% of the residual variation in salaries,

conditional on teacher characteristics. Adding school fixed e↵ects instead only explains an

additional 2.7% of the root MSE. We can conclude that the main source of variation in wages

is across districts, not across schools within districts.

B3.2 Student Composition

The cross-district variation in the share of low-achieving students (� in our model) largely

dominates the within-district, cross-school variation. We provide evidence of this in three

di↵erent ways.

1. Estimates from an OLS student-level regression of an indicator for being low-achieving, to

which we progressively add district and school fixed e↵ects, indicates that districts explain

8.7% of the variation in this probability whereas schools only explain an additional 2.7%.

2. The estimated R
2 of an OLS regression of the school-level share of low-achieving students

on district fixed e↵ects, weighted by enrollment, indicates that 74% of the variation in the

school-level share is explained by the district.

3. For each school, we calculate the absolute di↵erence between the school-level and the

district-level shares of low-achieving students. This absolute di↵erence has a mean of 0.05

and a standard deviation of 0.06. The 25th, 50th and 75th percentile of this absolute

di↵erence are 0.01, 0.03 and 0.07 respectively.
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B3.3 Teacher Assignment Across School-Grades Within a District

The identification of c1 and c2 in our achievement model relies on the assumption of random

sorting of teachers across school-grades within each district, conditional on all the covariates

described in Appendix B2.3. To test for the presence of non-random sorting, in Table B7 we

combine the approaches of Chetty et al. (2014) and Rothstein (2010). In columns 1 and 2

we follow Chetty et al. (2014) and estimate the slope of the relationship between changes in

students’ test score residuals (obtained from a regression of test scores on all the covariates

in equation (13)) and changes in c1 and c2. As in Chetty et al. (2014), we control for school-

by-grade and school-by-year fixed e↵ects. These tests, shown in columns 1 and 2, reveal a

slope coe�cient that is statistically indistinguishable from one, indicating that our estimates

of (c1, c2) are forecast unbiased for (c1, c2).

In columns 3 and 4 of Table B7 we combine the above empirical design with the test

proposed by Rothstein (2010) and estimate the relationship between changes in (c1, c2) and

changes in lagged test score residuals. If the estimates in this specification were significant,

they would indicate non-random sorting of teachers across grade-schools. Reassuringly, the

slope coe�cients in columns 3 and 4 are smaller than those in columns 1 and 2 and statisti-

cally indistinguishable from zero.

Table B7: Test for Non-Random Teacher Sorting Across Grade-Schools (Rothstein 2010)

Residuals Lagged residuals
(1) (2) (3) (4)

�c0 1.204⇤⇤⇤ 0.365
(0.072) (0.250)

�c1 0.905⇤⇤⇤ 0.394
(0.164) (0.286)

School-by-year FE Yes Yes Yes Yes
N 6448 1269 1518 298
# school-grades 1950 694 582 174

B4 Robustness Checks

In this section, we conduct two sets of robustness checks with respect to the two maintained

assumptions underlying our identification strategy:

A1: (x, c) are observable to all districts. With our data, it is di�cult to separate preferences

from information friction; we abstract away from the latter.

A2: Districts cannot discriminate among teachers by factors other than (x, c).
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As a partial test for the robustness of our results with respect to A1, we conduct the

following exercise: Instead of (c1, c2) , districts observe (c1 + err1, c2 + err2) and make wage

and job o↵er decisions based on these noisy measures. Assuming that errk s N
�
0, �2

errk

�

are i.i.d. random noises and considering values of �errk equal to one, two, or four times

the standard deviation of ck, for k = 1, 2, we repeat the procedure described in Section

4.1.2 of the main text to construct sub-o↵er sets using the observed matches. Column 1 of

Table B11 reports the baseline estimates of Aux 1a, which are key for the identification of

teachers’ preferences. Columns 2-4 show estimates obtained assuming that both teachers’

and districts’ decisions are based on (c1 + err1, c2 + err2) , while the researcher observes

(c1, c2). Columns 5-7 show the corresponding estimates assuming that districts’ decisions are

based on (c1 + err1, c2 + err2), while teachers’ decisions are based on (c1, c2). Throughout

these exercises, the estimates of Aux 1a are robust.

To investigate robustness to a violation of A2, we consider the possibility that some

ine↵ective teachers may have been hired for reasons other than (x, c). Table B12 compares

our auxiliary model Aux 1a with its counterpart that does not use observed teacher-district

(i, d) matches to infer o↵ers for other teachers if i’s e↵ectiveness with either low- or high-

achieving students is below the 10th percentile among all teachers. Doing so has a significant

impact on the number of inferred o↵ers for other teachers; yet Aux 1a remains robust.

It should be noted that although our robustness checks give some comfort that simple

violations of A1 and A2 may not seriously a↵ect our inference, they are no proof that these

assumptions (maintained throughout) are innocuous.

B5 The Impact of Changes in Parameter Values on

Auxiliary Models

Following Einav et al. (2018), we provide more evidence on the mapping between data and

parameters via a perturbation exercise. We adjust each parameter one at a time and measure

responses of the predicted auxiliary models we use for estimation.

To be specific, letting
n
b✓n
o20

n=1
be the vector of estimated structural parameters and

{b�✓n}
20
n=1 be the vector of their standard errors, we re-simulate our model 20 times. In the

n
th simulation, we use the parameter vector

n
b✓1, b✓2, ..., b✓n�1,

b✓n + b�✓n , b✓n+1, ...,
b✓20
o
, where the

n
th parameter is perturbed by its standard error, and obtain new estimates of the auxiliary

models. We then compute the percent change in absolute terms for each auxiliary model

(regression coe�cient or moment). This exercise produces a matrix of dimension 115 ⇥
20 (number of auxiliary models ⇥ number of parameters). To ease exhibition, we take
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simple averages within sub-blocks of this matrix. Specifically, we split the auxiliary models

into five groups as specified in the paper (Aux 1a, Aux 1b, Aux 2, Aux 3, and Aux 4)

and split parameters into three groups (teacher preference parameters, district preference

parameters, and wage-setting resistance cost parameters). This results in the 5 x 3 summary

matrix shown in Table B13. Each cell in Table B13 shows the average percent change across

auxiliary models and parameter permutations within a given sub-block.

Column 1 of Table B13 shows that teacher preference parameters primarily a↵ect the sub-

o↵er and all-o↵er regression models (Aux 1a and Aux1b), as well as the regression coe�cients

that link districts’ wage choices to their pre-determined conditions (Aux 3). It is unsurprising

that Aux 1a and Aux 1b are closely related to teachers’ preferences, as these regressions are

designed to mimic a conditional logit model of teachers’ choices. Additionally, as teachers’

preferences change, districts change their wage schedules in order to attract their preferred

teachers; such responses are captured by changes in Aux 3.

Column 2 shows that district preference parameters mostly a↵ect the regression coef-

ficients that link wages to districts’ pre-determined conditions (Aux 3) and the all-o↵er

regression (Aux 1b), but they also a↵ect the sub-o↵er regression (Aux 1a). As we argued in

our identification section, Aux 3 should be informative of districts’ preferences as districts

can use wage choice to push or pull teachers; moreover, the di↵erence between Aux 1a and

1b are also informative of districts’ preferences.

Finally, Column 3 shows that the wage-setting resistance cost parameters a↵ect the wage

regressions and cross-district wage moments (Aux 3 and Aux 4). This is unsurprising as these

two auxiliary models directly summarize wage choices. Notice that, by design, resistance cost

parameters should have zero impact on Aux 1a, Aux 1b, and Aux 2, because these auxiliary

models are obtained while holding wage schedules at the observed equilibrium levels.
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B6 Additional Tables and Figures

Table B8: Estimated parameters of teacher e↵ectiveness

⇢̂1 ⇢̂2

exp = 0 0 0
exp 2 [1, 2] 0.0068 0.0009
exp 2 [3, 4] 0.0154 0.0057
exp 2 [5, 9] 0.0117 0.0028
exp 2 [10, 14] 0.0117 0.0049
exp 2 [15,+1) 0.0112 0.0038
R2 0.677 0.625

Table B9: Distribution of teacher e↵ectiveness

c1 c2

min -0.1398 -0.1988
p1 -0.0630 -0.0779
p5 -0.0345 -0.0417
p10 -0.0225 -0.0278
p25 -0.0049 -0.0075
median 0.0115 -0.0108
mean 0.0116 0.0110
p75 0.0282 0.0300
p90 0.0454 0.0503
p95 0.0582 0.0664
p99 0.0894 0.0978
max 0.1532 0..2362
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Table B10: Teacher and District Characteristics (2010)

A. Teacher Characteristics All x1< 3 x1� 10
x1: Experience 15.6 (9.6) 1.6 (0.5) 20.2 (7.7)

x2: MA or above 0.55 (0.50) 0.05 (0.22) 0.66 (0.48)

10c1 0.11 (0.25) 0.07 (0.27) 0.11 (0.25)

10c2 0.12 (0.30) 0.06 (0.32) 0.12 (0.29)

Corr (c1, c2) 0.65 - -

# Teachers 6,741 391 4,675

B. District Characteristics All �d 1st Quartile �d 4th Quartile

Urban 0.04 0.02 0.03

Suburban 0.15 0.34 0.09

�d 0.50 (0.12) 0.34 (0.07) 0.64 (0.06)

Capacity 16.4 (30.7) 18.4 (16.2) 15.1 (46.2)

Budget/Capacity ($1,000) 52.4 (6.1) 54.3 (6.7) 51.2 (5.7)

Characteristics of District Incumbent Teachers (d0 = d)

Average experience 17.5 (5.1) 16.6 (4.6) 18.0 (5.6)

Share w/MA or above 0.52 (0.26) 0.57 (0.26) 0.48 (0.28)

Average 10c1 0.10 (0.10) 0.10 (0.09) 0.09 (0.13)

Average 10c2 0.11 (0.13) 0.11 (0.11) 0.09 (0.15)

# Districts 411 103 103

Means and std. deviations (in parentheses) of teacher (Panel A) and district (Panel B) characteristics.
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Table B11: Estimates of Aux 1a Assuming Noisy Measures of (c1, c2)

Baseline
a

For teachers and districts For districts only

�errk 2*�errk 4*�errk �errk 2*�errk 4*�errk
(1) (2) (3) (4) (5) (6) (7)

wage 0.0015 0.0017 0.0018 0.0027 0.0017 0.0018 0.0027

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

e�d -0.0038 -0.0177 -0.0170 -0.0121 -0.0261 -0.0271 -0.0448

(0.0088) (0.0093) (0.0096) (0.0077) (0.0115) (0.0149) (0.0156)

c1 ⇥ �d 0.5295 0.9761 0.8342 0.8377 0.9704 0.6981 0.8483

(0.2923) (0.3027) (0.3137) (0.2835) (0.2963) (0.3095) (0.2389)

d 6= d0 -0.7138 -0.7162 -0.7073 -0.7020 -0.7163 -0.7074 -0.7017

(0.0166) (0.0168) (0.0170) (0.0175) (0.0168) (0.0170) (0.0175)

d 6= d0⇥ exp -0.0079 -0.0076 -0.0079 -0.0078 -0.0076 -0.0079 -0.0078

(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)

zd 6= zd0 -0.0628 -0.0641 -0.0671 -0.0709 -0.0641 -0.0671 -0.0711

(0.0060) (0.0060) (0.0061) (0.0069) (0.0060) (0.0061) (0.0069)

urban 0.0112 0.0242 0.0227 0.0214 0.0242 0.0226 0.0210

(0.0022) (0.0027) (0.0026) (0.0031) (0.0027) (0.0026) (0.0031)

suburban 0.0126 0.0110 0.0110 0.0041 0.0111 0.0111 0.0041

(0.0023) (0.0022) (0.0022) (0.0025) (0.0022) (0.0022) (0.0025)

large metro 0.1111 0.1053 0.1070 0.0962 0.1061 0.1080 0.1006

(0.0270) (0.0271) (0.0263) (0.0297) (0.0271) (0.0263) (0.0298)

N 57068 52439 53310 46906 52439 53310 46906

a
: Estimates of Aux 1 used in the main text (Column 1 of Table 2). Robust standard errors in parentheses.
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Table B12: OLS of Teacher-District Matches (Aux 1a): Baseline and Robustness

Baseline Robustness

Teacher’s Choice Set Inferred O↵er Set
a

Inferred O↵er Set
b

wage 0.002 (0.0002) 0.002 (0.0003)

e
�d -0.004 (0.009) -0.024 (0.014)

c1⇥�d 0.53 (0.29) 1.12 (0.42)

I (d 6= d0) -0.72 (0.02) -0.67 (0.02)

I (d 6= d0)⇥ experience -0.008 (0.001) -0.009 (0.001)

I (zd 6= zd0) -0.06 (0.006) -0.08 (0.008)

qd : urban 0.01 (0.002) 0.004 (0.003)

qd : suburban 0.01 (0.002) 0.01 (0.003)

qd : large metro 0.11 (0.03) 0.09 (0.03)

# Obs 57,068 33,053

a and b: OLS specified in Aux 1a, teacher fixed e↵ects included; 2014 data.

a: The auxiliary model used in the main text (Column 1 of Table 2).

b: Estimates obtained ignoring teacher-district matches (i, d) for teachers with c1i or c2i
below the 10th percentile of their respective distribution when inferring matches.

Robust standard errors are in parentheses.

Table B13: Parameter Permutation Exercise: Change in Estimates of Auxiliary Models from
Parameter Perturbation

Parameter Group
Auxiliary Teacher District Wage-Setting
Model Preferences Preferences Resistance Costs
Aux 1a 27.30% 0.45% 0.00%
Aux 1b 18.63% 2.41% 0.00%
Aux 2 0.40% 0.03% 0.00%
Aux 3 56.53% 11.17% 244.53%
Aux 4 1.33% 0.38% 29.58%
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Figure B3: Distribution of teacher e↵ectiveness
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