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Abstract

This paper studies the dissemination of frontier knowledge through higher education. Apply-
ing natural language processing (NLP) techniques to the text of 1.7M university course syllabi
and 20M academic articles, we construct the “education-innovation gap,” a measure of a syl-
labus’s distance from frontier knowledge. Using this measure, we document four new facts.
First, courses differ greatly in their education-innovation gap, even after controlling for field,
course-level, and time. Second, instructors play an important role in shaping course content.
Research-active instructors teach more frontier knowledge, particularly when their research is
close to the course topic. Third, access to frontier knowledge is unequal: Schools enrolling more
socio-economically advantaged students offer courses with a lower gap. Lastly, students from
lower-gap schools are more likely to complete a doctoral degree, produce more patents, and earn
more after graduation.
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1 Introduction

Creating and disseminating frontier knowledge is essential for innovation and economic growth.
Frontier knowledge is a key input for the production of new ideas (Jones, 2009; Moser and Voena,
2012; Williams, 2013; Iaria et al., 2018), and access to it has been linked to human capital accumu-
lation, skill formation, and economic growth (Goldin and Katz, 2010; Acemoglu and Autor, 2011;
Deming and Noray, 2020b; Bloom et al., 2021). Therefore, understanding how knowledge diffuses
has crucial policy implications. Previous studies point to a fundamental role for education, particu-
larly higher education (i.e., universities; HE in short) in this process (Valero and Van Reenen, 2019;
Akcigit et al., 2020). This implies that investigating how HE content is shaped is an important first
step to study the dissemination of frontier knowledge.

This line of inquiry, though, faces a major empirical obstacle: We typically do not observe course
content in standard administrative data. As a result, our understanding of the diffusion of frontier
knowledge in HE courses remains limited: how the presence of frontier knowledge in courses varies
across HE institutions, whether instructors—who often perform both knowledge production and
dissemination—play a big role in this process, and whether frontier knowledge is equally accessible
to students from different socio-economic backgrounds.

In this paper, we overcome this challenge by making use of a novel source of information on
educational content: the text of millions of syllabi from US colleges and universities. To quantify the
diffusion of frontier knowledge through higher education, we propose a new metric: the education-
innovation gap. This metric is designed to capture the distance between the content of a specific
course, as described in each syllabus, and frontier knowledge. To measure frontier knowledge—
the most advanced understanding of a particular topic or field—we rely on cutting-edge research,
captured by the content of academic articles that recently appeared in high-impact factor journals.
For STEM disciplines, we additionally use the text of patents to capture frontier knowledge. We
then construct the gap by applying state-of-the-art text-analysis techniques that compare the content
of syllabi and articles.

The first part of the paper details our methodology to quantify the presence of frontier knowl-
edge in course content. We begin by collecting and processing the full text of 1.7 million syllabi,
covering about 540,000 courses taught at 800 four-year US institutions between 1998 and 2018.!

This sample represents about 5% of all courses taught in this time window and spans nearly all

!Previous studies have used syllabi to quantify the content of higher education courses. For example, Angrist and
Pischke (2017) use undergraduate econometrics course syllabi from 38 universities to study the evolution of econometrics
instruction.



tields. While the sample over-represents courses from very selective schools, it is representative of
the population in terms of fields, course levels (basic, advanced undergraduate, and graduate), and
a broad set of school characteristics. Our baseline analysis makes use of courses of all fields and
course levels, to provide the broadest possible picture of the presence of frontier knowledge in HE.
The granularity of our data also allows us to examine differences across fields and levels. We also
collect the text of over 20 million academic articles published in top academic journals since the
journals’ creation.”

Combining information on syllabi and articles, we calculate pair-wise textual similarities be-
tween these documents, following three steps. First, we represent each document (a syllabus or an
article) as a term frequency vector, projecting the text of the document on a comprehensive list of
terms that refer to knowledge items. Each vector element is the frequency of a given term in the
document, divided by the length of the document. Second, we use the “term-frequency-backward-
inverse-document-frequency” (TFBIDF) approach (Kelly et al., 2021) to increase the importance of
terms that most meaningfully capture a document’s content. This approach gives higher weights to
more informative terms and de-emphasizes terms more commonly used across all documents at a
certain point in time. Third, we use these reweighted term frequency vectors to compute the cosine
similarity between each syllabus and each article.

Armed with these cosine similarities, we construct the education-innovation gap of a given syl-
labus as the ratio of its average similarities with (a) “older” knowledge vintages, i.e., all articles
published 7 years prior to the syllabus’s date and (b) “frontier” knowledge, i.e., all articles pub-
lished 7’ < 7 years prior to the syllabus’s date. We account for cross-field differences in the speed
of knowledge expansion (the rate at which new knowledge gets produced, which may be higher
in some fields than others) by choosing 7 and 7’ to match the temporal patterns of citations to aca-
demic articles in each field. Specifically, defining citation lags as the differences between the year
of publication of a citing article and that of a cited article, we select 7 and 7’ to be the 90th and 5th
percentiles of citation lags across all the articles in the syllabus’s field. This allows us to account for
cross-field differences in the speed and trajectory of frontier knowledge creation.’

Naturally, the gap is higher for syllabi that cover more knowledge that is older, rather than
newer. For example, a Computer Science course that teaches Visual Basic (a relatively obsolete pro-

gramming language) in 2020 would have a larger gap than a course that teaches Julia (a more recent

2Studies that have used recent academic publications to capture the research frontier include Iaria et al. (2018) and
Angrist et al. (2017).

3Qur results are robust to small variations in the timing definition of old and new knowledge vintages within fields,
as well as defining 7 and 7’ to be constant across fields.



programming language), because Visual Basic is mostly covered by old articles and Julia is mostly
covered by recent articles.* By virtue of being constructed as a ratio of similarities, the gap is not
affected by idiosyncratic attributes of a syllabus (such as length, structure, or writing style), which
could introduce noise in cosine similarities as measures of content but would cancel out in a ratio
measure.

Implementing the TFBIDF-adjustment in the construction of our measure helps to properly cap-
ture a syllabus’s distinctive knowledge content. This adjustment implies that the gap does not
penalize syllabi for covering “classic” or “fundamental” knowledge. Although they belong to older
knowledge vintages, terms related to classic topics are still widely taught. Therefore, they appear
across many documents and receive a low weight. Similarly, the TFBIDF-adjustment reduces the
impact of “buzzwords”—terms that become popular within a time window (and therefore receive
a low weight) but may not necessarily represent new breakthrough knowledge.

A few empirical regularities confirm the ability of our measure to capture the distance between
course content and the knowledge frontier. For example, the gap is lower for syllabi that reference
more recent articles and books in their lists of recommended readings. Moreover, the gap varies rea-
sonably across course levels: It is the largest for basic undergraduate courses (taught in the first two
years of a bachelor’s degree and more likely to cover the fundamentals of a discipline) and small-
est for graduate-level courses (master’s and PhD). Using a simulation exercise, we also show that
gradually replacing “older” knowledge in a syllabus with “newer” knowledge (i.e., words most fre-
quently appearing in old and new articles, respectively) progressively reduces the syllabus’s gap.
Lastly, we show that the education-innovation gap for courses in STEM fields is very similar when
we use patents (instead of academic publications) to capture the knowledge frontier.

In the second half of the paper, we use the education-innovation gap to learn how frontier
knowledge is disseminated through HE. We uncover significant differences across courses in their
education-innovation gap. To move a syllabus from the 25th to the 75th percentile of the gap distri-
bution, approximately 70% of its content would have to be replaced with newer knowledge. About
25% of the overall variation in the gap occurs within the same school and course, across different
instructors. The impact of instructors can also be seen from the fact that the gap of a typical course

remains stable over time (i.e., instructors update syllabi very infrequently), but it declines signifi-

‘First released in 1991, Visual Basic is still supported by Microsoft in recent software frameworks, but
it was discontinued in 2020 (https://visualstudiomagazine.com/articles/2020/03/12/vb-in-net-5.aspx, retrieved
9/30/2020).  Julia is a general-purpose language initially developed in 2009. Constantly updated, it is
among the best for numerical analyses and computational science and is used at over 1,500 universities
(https:/ /juliacomputing.com/blog/2021/08 /newsletter-august/, retrieved 9/30/2021).
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cantly when the instructor of the course changes. In contrast, a much smaller share of the overall
variation can be attributed to differences across schools, fields, and course levels. To account for
these differences, the rest of our analysis compares syllabi within each field, course level, and year.

Instructors who are more active in producing research (i.e., they publish more, are cited more,
and receive more grants) teach more frontier knowledge in their courses. This implies that research
and teaching, two major tasks of a faculty member sometimes portrayed as competing with each
other (Becker and Kennedy, 2005; Arnold, 2008; Hattie and Marsh, 1996; Courant and Turner, 2020),
are actually complements. Instructors teaching courses closer in topic to their research are also
more likely to cover frontier knowledge. Importantly, all these patterns are most pronounced for
graduate-level courses. These findings are in line with a model in which the cost of keeping a
course up-to-date depends on the instructor’s familiarity with the research frontier. Our results also
imply that proper deployment of faculty across courses can bring the content of education closer
to the knowledge frontier. Investments in faculty research (both public, in the form of government
grants, and made by each institution) can generate additional returns in the form of more updated
instruction.

In principle, the education-innovation gap could also vary across schools, which feature dif-
ferent organizational models, use different educational inputs, and enroll students from different
backgrounds. However, our data do not reveal a strong relationship between these factors and the
education-innovation gap. For example, although our data indicate that schools that are private,
are larger, and spend more teach courses with lower gaps, these relationships become insignificant
once we allow these characteristics to jointly explain the gap.

We do, however, find that the education-innovation gap correlates with two sets of school-level
characteristics. The first is the average number of faculty publications, which bears a significant,
negative relationship with the gap even after controlling for other cross-school differences such as
school size, research, and teaching expenses. This result is in line with our previous findings on the
role of instructors; furthermore, it confirms that research activities complement teaching and the
dissemination of frontier knowledge.

The second set of characteristics refers to students” socioeconomic backgrounds. The education-
innovation gap is significantly higher in schools enrolling students with lower median parental
income and schools with a higher share of Black or Hispanic students. This relationship remains af-
ter accounting for cross-school differences in sector, enrollment, expenditures, faculty composition,

and even student preparedness (measured using the SAT and ACT scores of admitted students).



Our data also indicate that students from schools that offer courses with a lower gap are more
likely to obtain a PhD and produce more patents. In addition, they are more likely to graduate on
time and have higher earnings. One explanation for this finding is that lower-gap courses attract
students with a higher propensity to innovate in the future. An alternative explanation is that access
to frontier knowledge through college courses promotes the creation of new knowledge (Biasi and
Moser, 2021; Iaria et al., 2018), which makes students more likely to engage in innovative activities.
While a formal test of the causal link between the education-innovation gap and student outcomes
is beyond the scope of this paper, both of these explanations indicate that schools could benefit from
expanding the coverage of frontier knowledge in the courses they offer.

In the final part of the paper, we probe the robustness of our results to the use of alternative
measures of frontier knowledge coverage. We consider three of them: the share of all “new” knowl-
edge contained in a syllabus, designed to avoid penalizing a syllabus for containing old knowledge
in addition to new one; a measure of “tail” knowledge, aimed at capturing the presence of the most
recent content; and the education-innovation gap obtained using patent filings as a measure of fron-
tier knowledge. All these alternative measures are strongly correlated with the baseline version of
the education-innovation gap, and our main results are qualitatively unchanged when we use them
in lieu of the gap.

The main contribution of our paper is a new text-based method to quantify knowledge diffusion
through higher education, which we implement on a novel dataset combining syllabi and academic
publications. Our metric, the underlying algorithm, and the methodology in general—which will
all be made available to researchers—can be used for future analyses of education and innovation.
Our analysis provides new evidence about the dissemination of frontier knowledge in HE and
highlights key economic forces behind this process. In doing so, this paper sheds new light on some
central questions related to innovation and HE and contributes to several strands of literature.

First, we contribute to the literature that has characterized heterogeneity in the production of hu-
man capital, focusing on differences in the returns to educational attainment (Hanushek and Woess-
mann, 2012), majors (Altonji et al., 2012; Deming and Noray, 2020a), college selectivity (Hoxby,
1998; Dale and Krueger, 2014), and the skill content of college majors (Hemelt et al., 2021; Li et al.,
2021). In this paper we take a novel approach: We directly examine curricula and educational con-
tent, among the most central components of higher education. With this approach, we document
significant differences in the knowledge covered by each course, which could have important im-

plications for students.



Second, we provide direct evidence of the importance of instructors in shaping the content of
higher education. While some studies have found important effects on student outcomes (Hoff-
man and Oreopoulos, 2009; Carrell and West, 2010; Braga et al., 2016; Feld et al., 2020), much less is
known about why and how instructors impact students (De Vlieger et al., 2020). We study instruc-
tors” contributions to the production of educational content and carefully characterize differences
across instructor types. Crucially, our findings highlight complementarities between teaching and
research activities.

Third, we highlight differences in the ability of higher education programs to equip students
with the knowledge necessary to innovate, which originate from heterogeneous course contents.
Importantly, these differences confirm a “lack of democratization” in access to valuable knowledge.
US inventors have been shown to come from a small set of schools, enrolling very few low-income
students (Bell et al., 2019). We find that these schools provide the most up-to-date educational
content, which in turn suggests that access to frontier knowledge is highly unequal.

Lastly, our results are related to the literature on the production of ideas, knowledge, and in-
novation. Existing studies have shown how access to existing frontier knowledge can foster the
creation of new knowledge. For example, Moser and Voena (2012), Williams (2013), and Galasso
and Schankerman (2015) show how, in various settings, easier access to pre-existing patents fosters
the creation of new patents. Similarly, laria et al. (2018) show that reduced scientific cooperation
due to World War II leads to a slow-down in the production of new science, and Biasi and Moser
(2021) show that a decline in the cost of accessing frontier knowledge in books leads to an increase
in the diffusion of those books. Education systems have been pointed as central for the dissem-
ination of frontier knowledge, particularly in fields such as STEM (Baumol, 2005; Toivanen and
Véananen, 2016; Bianchi and Giorcelli, 2019; Akcigit et al., 2020).> We contribute to these works by

documenting where frontier knowledge can be accessed within the HE system.

2 Data

Our empirical analysis combines data from multiple sources. These include the text of course syl-
labi; the abstract of academic publications; job titles, publications, and grants of each instructor;
characteristics of US higher education institutions; and labor market outcomes and innovation ac-

tivities of the students at these institutions. More detail on the construction of our final data set can

>The literature on the effects of education on innovation encompasses studies of the effects of the land grant college
system (Kantor and Whalley, 2019; Andrews, 2017) and, more generally, of the establishment of research universities
(Valero and Van Reenen, 2019) on patenting and economic activity. Educational institutions also play a crucial role in
fostering entrepreneurship (Tartari and Stern, 2021).



be found in Appendix B.

2.1 College and University Course Syllabi

We obtained the raw text of a large sample of college and university syllabi from the Open Syllabus
Project (OSP), a non-profit organization that collects these data by crawling publicly accessible uni-
versity and faculty websites to support educational research and its applications. The initial sample
contains nearly seven million syllabi of courses taught in over 80 countries between 1990 and 2018.

Most syllabi share a standard structure. The standard syllabus begins with basic details of the
course (such as title, code, and the name of the instructor). It proceeds with a short description of
its content, followed by a more detailed list of topics and required or recommended readings for
each class session. Most syllabi contain information on evaluation criteria, such as assignments and
exams; some also include general policies regarding grading, absences, lateness, and misconduct.
Following this general structure, we parse each syllabus and extract four sets of information, which
we describe in detail below: (i) basic course details, (ii) the course’s content, (iii) the list of required

and recommended readings, and (iv) a description of evaluation methods.

Basic course details These include the name of the institution, the title and code of the course,
the name of the instructor, the quarter or semester, and the academic year in which the course is
taught. Course titles and codes allow us to classify each syllabus into one of three course levels:
basic undergraduate, advanced undergraduate, or graduate. OSP assigns each syllabus to one of 69
detailed fields. We use this classification throughout the paper. For some tests, we further aggregate

fields into four macro-fields: STEM, Humanities, Social Sciences, and Business.®

Course content We identify the portion of a syllabus that contains a description of the course’s
content by searching for section titles such as “Summary,” “Description,” and “Content.”” Typically,
this portion describes the basic structure of the course, the key concepts that are covered, and (in

most cases) a timeline of the content and the materials for each lecture.

Reference list We compile a list of bibliographic information for the required and recommended
readings of each course by combining the list provided to us by OSP with all other in-text citations
that we could find, such as “Biasi and Ma (2023).” We are able to compile a list of references for 71

percent of all syllabi. We then collect bibliographic information on each reference from Elsevier’s

SThe field taxonomy used by OSP draws extensively from the 2010 Classification of Instructional Programs of the
Integrated Postsecondary Education Data System, available at https://nces.ed.gov/ipeds/cipcode/default.aspx?y=>55.
Appendix Table BV lists all 69 fields and shows the correspondence between fields and macro-fields.

"The full list of section titles used to identify each section is shown in Appendix Table BIV.



SCOPUS database (described in more detail in Section 2.2); this includes title, abstract, journal,

keywords (where available), and textbook edition (for textbooks).

Sample restrictions and description To maximize consistency over time, we focus our attention
on syllabi taught between 1998 and 2018 in four-year US institutions with at least 100 syllabi in
our sample. We remove universities that exclusively or primarily focus on online instruction. We
also exclude 35,917 syllabi (1.9 percent) with fewer than 20 words or more than 10,000 words (the
bottom and top 1 percent of the length distribution).

One of the advantages of our data is its breadth, which allows us to examine courses in all
fields and course levels. We believe studying all of them is important. While basic courses should
in principle be more focused on core discipline concepts, they may also cover frontier knowledge.
Similarly, STEM and more technical fields are naturally associated with innovation and frontier
knowledge. However, many scholars have noted how also the arts and humanities play an impor-
tant role in the knowledge economy (Bullen and Robb, 2004). For these reasons, in our analysis, we
retain courses of all fields and course levels and present all our tests separately by macro-field and
course level.

Our final sample, described in panel (a) of Table 1, contains about 1.7 million syllabi of 542,251
courses at 767 institutions. Thirty-three percent of all syllabi cover STEM courses, ten percent cover
Business, 30 percent cover Humanities, and 24 percent cover Social Science. Basic courses represent
39 percent of all syllabi, and graduate courses represent 33 percent. A syllabus contains an average
of 2,226 words in total, with a median of 1,778. Our textual analysis focuses on “knowledge” words,
i.e.,, words that belong to a dictionary, a list of words compiled to capture a document’s academic
content (defined in greater detail in Section 3). The average syllabus contains 420 unique knowledge

words, with a median of 330.

2.2 Academic Publications

We use information from Elsevier’s SCOPUS database and compile the list of all peer-reviewed
articles that appeared in the top academic journals of each field since the journal’s foundation. Top
journals are defined as those ranked among the top 10 by Impact Factor (IF) in any of SCOPUS’s
191 fields at least once since 1975 (or the journal’s creation, if it occurred after 1975).> Our final
list of publications includes 20 million articles, corresponding to approximately 100,000 articles per
year. For each article, we extract information on its title, abstract, keywords, authors, and authors’

affiliations.

8Evenifa journal appeared only once in the top 10, we collect all articles published since its foundation.



Table 1: Summary Statistics: Syllabi, Instructors, and Schools

Panel (a): Syllabi Characteristics

count mean std 25% 50% 75%
Education-innovation gap 1,706,319 93.9 6.9 89.8 93.6 97.7
# Words 1,706,319 2226 1987 1068 1778 2796
# Knowledge words 1,706,319 1011 1112 349 656 1236
# Unique knowledge word 1,706,319 420 327 203 330 535
STEM 1,706,319 0.326 0.469 0 0 1
Business 1,706,319 0.103 0.304 0 0 0
Humanities 1,706,319 0.299 0.457 0 0 1
Social science 1,706,319 0.240 0.427 0 0 0
Basic 1,706,319 0.393 0.488 0 0 1
Advanced 1,706,319 0.275 0.446 0 0 1
Graduate 1,706,319 0.332 0.471 0 0 1

Panel (b): Instructors” Research Productivity

count mean std 25% 50% 75%
Ever Published? 332,064 041 0.49 0 0 1.00
# Publications per year 135,364 1.51 1.94 1.00 1.00 1.38
# Publications, last 5 years 111,404 6.01 14.89 0 1.00 5.42
# Citations per year 135,364 29.22 105.92 0 1.85 17.92
# Citations, last 5 years 111,404 172.46 887.99 0 0 54.32
Ever Grant? 332,064 0.18 0.38 0 0 0
# Grants 58,136 10.14 19.96 2.00 4.00 10.00
Grant amount ($1,000) 54,462 4,023 19,501 236 912 3,201

Panel (c): Students’ Characteristics and Outcomes at the School Level

count mean std 25% 50% 75%
Median parental income ($1,000) 767 97,917 31,054 78,000 93,500 109,900
Share parents w/income in top 1% 767 0.030 0.041 0.006 0.013 0.033
Share minority students 760 0.221 0.166 0.116 0.166 0.267
Graduation rates (2012-13 cohort) 758 0.614 0.188 0.473 0.616 0.765
Income (2003-04, 2004-05 cohorts) 762 45,035 10,235 38,200 43,300 49,800
Intergenerational mobility 767 0.294 0.138 0.182 0.280 0.375
Admission rate 715 0.642 0.218 0.533 0.683 0.800
SAT score 684 1104.4 130.5 1011.5 1079.5 1182.0

Note: Summary statistics of the variables used in the analysis.

2.3 Alternative Data Source to Capture Frontier Knowledge: Patents

An alternative way to measure the knowledge frontier is to use the text of patents, rather than
academic publications. To this purpose, we collect the text of more than six million patents issued

since 1976 from the US Patent and Trademark Office (USPTO) website. We capture the content of



each patent with its title and abstract.

2.4 Instructors: Research Productivity, Funding, and Job Titles

Nearly all course syllabi report the name of the course instructor. Using this information, we col-
lect data on instructors’ research productivity (publications and citations) and the receipt of public

research funding. For a subset of instructors, we also collect information on job titles.

Research productivity Individual-level publications and citations data are from Microsoft Aca-
demic (MA). As one of the world’s top academic search engines, MA listed publications, working
papers, other manuscripts, and patents for each researcher, together with citation counts for these
documents, until its discontinuation in December 2021. We link MA records to syllabi via fuzzy
matching based on instructor name and institution (details on this procedure are in Appendix B).
We are able to successfully find 41 percent of all instructors, and we assume that instructors without
a MA profile never published any article in a top academic journal tracked by MA (Table 1, panel
(b)), an assumption that is supported by manual random searches.

Using data from MA, we measure the quality and quantity of each instructor’s research output
with the number of articles published and citations received in the previous five years.” On average,
instructors published 6 articles in the previous five years, with a total of 172 citations (Table 1, panel
(b)). The distributions of citation and publication counts are highly skewed: The median instructor

in our sample only published one article in the previous five years and received no citations.

Funding We also collect information on US government grants received by each instructor, which
allows us to measure public investment in academic research. We focus on two of the main funding
agencies of the US government: the National Science Foundation (NSF) and the National Institute
of Health (NIH).!” Our grant data include 480,633 NSF grants active between 1960 and 2021 (with an
average size of $582K in 2019 dollars) and 2,566,358 NIH grants active between 1978 and 2021 (with
an average size of $504K). We link grants to instructors via fuzzy matching between the name and
institution of the investigator and those of the instructor (more details can be found in Appendix B).
Eighteen percent of all syllabi instructors are linked to at least one grant. Among these, the median

instructor receives four grants, with a combined size of $912K (Table 1, panel (b)).

Job titles In many US states, information on public college and university employees is disclosed

online, to comply with state regulations on transparency and accountability. These records usually

°Using publications in the previous five years helps address issues related to the life cycle of publications, with older
instructors having a higher number of publications per year even if their productivity declines with time.

OThese data are published by each agency, athttps://www.nsf.gov/awardsearch/download. jspand https:
//exporter.nih.gov/EXPORTER_Catalog.aspx. We accessed these data on May 25, 2021.

10


https://www.nsf.gov/awardsearch/download.jsp
https://exporter.nih.gov/ExPORTER_Catalog.aspx
https://exporter.nih.gov/ExPORTER_Catalog.aspx

contain each employee’s name and job title. We are able to collect information on job titles for
32,090 instructors in our syllabi sample (9.7 percent of all instructors and 13 percent of public-sector
instructors), employed in 278 public institutions in 13 states. We are able to observe instructors’
titles for the most recent years (the modal year is 2017; we detail the coverage of these data in
Appendix B). Among all syllabi instructors for which we have job title information, 42 percent
are ladder faculty (including 11 percent who are assistant professors, 13 percent who are associate

professors, and 18 percent who are full professors; Appendix Figure Al).

2.5 Information on US Higher Education Institutions

The last component of our data set includes information on all US colleges and universities covered
in our syllabi sample. Our primary source is the Integrated Postsecondary Education Data Sys-
tem (IPEDS), maintained by the National Center for Education Statistics (NCES).!! For each school,
IPEDS reports a set of institutional characteristics (such as name and address, public or private sec-
tor, affiliation, and Carnegie classification); the types of degrees and programs offered; expenditure
and endowment; characteristics of the student population, such as the distribution of SAT and ACT
scores of all admitted students, enrollment figures for different demographic groups, completion
rates, and graduation rates; and faculty composition (ladder and non-ladder). We link each syl-
labus to the corresponding IPEDS record using school names. We are able to successfully link all
syllabi in our sample.

We complement data from IPEDS with information on schools and students from three addi-
tional sources. The first one is the school-level data set assembled and used by Chetty et al. (2020),
which includes a school’s selectivity tier (defined using Barron’s scale), the incomes of students and
parents, the number of patents obtained by all students, and a measure of intergenerational mo-
bility (the share of students with parental income in the bottom quintile who reach the top income
quintile as adults). These data are calculated using data on US tax records for a cross-section of
cohorts who graduated between 2002 and 2004. The second source is the Survey of Earned Doc-
torates, conducted by the NSFE, which reports the characteristics of all doctoral degree recipients in
US institutions each year. We use information on students” graduating cohorts and bachelor’s insti-
tutions to construct the share of undergraduate students in each school and graduation year who

eventually complete a doctoral degree for the years 1998-2018.'? The third is the College Scorecard

"IPEDS includes responses to surveys from all postsecondary institutions since 1993. Completing these surveys is
mandatory for all institutions that participate, or apply to participate, in any federal financial assistance programs.

2The Survey of Earned Doctorates has been conducted since 1957. To assign a doctoral degree recipient to their
bachelor’s degree cohort, we subtract six from their year of doctoral degree completion.
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Database of the US Department of Education, an online tool designed to help users compare the
costs and returns of attending various colleges and universities in the US. This database reports the
earnings of graduates ten years after the start of the program. We use these variables, available for
the academic years 1997-98 to 2007-08, to measure student outcomes for each school.

Panel (c) of Table 1 summarizes the sample of colleges and universities for which we have syllabi
data. On average, the median parental income of all students at each school is $97,917. Across all
schools, three percent of all students have parents with incomes in the top percentile. The share
of minority students equals 0.22. Graduation rates average 61.4 percent in 2018, whereas students’
incomes ten years after school entry, for the 2003-04 and 2004-05 cohorts, are equal to $45,035.
Students’ average intergenerational mobility is equal to 0.29; this implies that, in the colleges and
universities in our sample, over one-fourth of graduates with parental income in the bottom quintile

reach the top quintile of personal income in adulthood.

2.6 Data Coverage and Sample Selection

Our syllabi sample only covers a fraction of all courses taught in US schools between 1998 and
2018." To more accurately interpret our empirical results, it is crucial to clarify patterns of selection
into the sample. To do so, we compile the full list of courses offered between 2010 and 2019 in a
subsample of 161 US institutions (representative of all institutions included in IPEDS) using course

catalogs in the archives of each school. ™

This allows us to compare our sample to the population of
all courses for these schools and years.

This exercise does not reveal stark patterns of selection based on observables. The share of
catalog courses covered by the syllabi sample remains stable over time, at 5 percent (Appendix
Figure AlII). This suggests that, among these randomly selected schools, the increase in the number
of syllabi over time is driven by an increase in the number of courses that are offered, rather than an
increase in sample coverage. Our syllabi sample is also similar to the population in terms of field
and course level composition. Between 2010 and 2018, STEM courses represent 33 percent of syllabi
in our sample and 24 percent of courses in the catalog; Humanities represent 30 and 32 percent, and

Social Sciences represent 24 and 20 percent, respectively (Appendix Figure AIV). Similarly, basic

undergraduate courses represent 39 percent of syllabi in our sample and 31 percent of courses in

13The number of syllabi increases over time, from 17,479 in 2000 to 68,792 in 2010 and 190,874 in 2018 (Appendix Figure
ATI).

“We begin by randomly selecting 200 schools among all four-year IPEDS institutions. Among these, we were able to
compile course catalogs for 161 institutions. These look very similar in terms of observables to all schools in our sample
(Appendix Table AI). We focus our attention on the years 2010 onward to maximize our coverage. For an example of a
course catalog, see https://registrar.yale.edu/course-catalogs.
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the catalog; advanced undergraduate courses represent 28 and 30 percent, and graduate courses

represent 33 and 38 percent (Appendix Figure AV). These shares are fairly stable over time.

Table 2: Selection into the Sample: Share of Syllabi Included in the Sample
and Institution-Level Characteristics

Panel (a): Share and A Share, Correlation w/ School Characteristics

Share in OSP, 2018 AShare in OSP, 2008-18

1) 2) 3) 4
Corr. SE Corr. SE
In Expenditure on instruction 0.002 (0.005) 0.015 (0.010)
In Endowment per capita -0.001 (0.002) -0.001 (0.002)
In Sticker price 0.003 (0.007) 0.007 (0.010)
In Avg faculty salary 0.016 (0.020) 0.049 (0.024)
In Enrollment 0.018 (0.009) 0.019 (0.011)
Share Black students -0.030 (0.038) 0.035 (0.060)
Share Hispanic students 0.171 (0.145) 0.161 (0.115)
Share Asian students 0.186 (0.214) 0.324 (0.239)
Share grad in Arts & Humanities  0.159 (0.168) 0.189 (0.179)
Share grad in STEM -0.001 (0.028) 0.064 (0.056)
Share grad in Social Sciences 0.014 (0.024) 0.104 (0.056)
Share grad in Business 0.037 (0.065) 0.116 (0.065)
F-stat 1.015 1.376
F-stat p-value 0.442 0.194

Panel (b): Share and A Share, By School Tier
Share in OSP, 2018  AShare in OSP, 2008-18

1) (2) 3) 4)
Mean SE Mean SE
Ivy Plus/Elite 0.024 (0.008) 0.022 (0.009)
Highly Selective 0.003 (0.003) 0.006 (0.004)
Selective Private 0.029 (0.018) 0.001 (0.029)
Selective Public 0.040 (0.023) 0.009 (0.029)
F-stat 3.677 1.806
F-stat p-value 0.008 0.136

Note: The top panel shows OLS coefficients (“Corr.”) and robust standard errors (“SE”) of
univariate regressions of each listed dependent variable on the corresponding independent
variable. The bottom panel shows OLS coefficients (“Mean”) and syllabus-clustered stan-
dard errors (“SE”) of a regression of each dependent variable on indicators for school tiers.
The dependent variables are the school-level share of syllabi contained in the OSP (Open Syl-
labus Project) sample in 2018 (columns 1-2) and the change in this share between 2008 and
2018 columns (3-4). The F-statistics refer to multivariate regressions that include all the listed
independent variables and test for the joint significance of these variables.

In addition, a school’s portion of the catalog that is included in our sample and the change in this
portion over time are unrelated to school observables. We show this in panel (a) of Table 2 (column

1), where we regress a school’s share of courses included in our sample in 2018 on the following

13



variables, one at a time and also measured in 2018: financial attributes (such as expenditure on
instruction, endowment per capita, sticker price, and average salary of all faculty), enrollment, the
share of students in different demographic categories (Black, Hispanic, Asian), and the share of
students graduating in Arts and Humanities, STEM, Social Sciences, and Business. We also test for
the joint significance of all these variables. We find that these variables are individually and jointly
uncorrelated with the share of courses in the syllabi sample, with an F-statistic close to one. In
column 2 we repeat the same exercise, using the 2008-2018 change in the share of courses included
in the syllabi as the dependent variable. Our conclusions are unchanged.

The only dimension in which our syllabi sample appears selected is school selectivity. Relative
to non-selective institutions (for whom the share of courses in the sample is less than 0.1 percent),
Ivy-Plus and Elite schools have a 2.4 percentage point higher share of courses included in the syllabi
sample, and selective public schools have a 4.0 percentage point higher share. Taken together, these
tests indicate that our syllabi sample does not appear to be selected on the basis of observable
characteristics of schools and fields, although it does over-represent Ivy-Plus, Elite, and selective
public schools. By construction, though, we cannot test for selection based on unobservables. Our

results should therefore be interpreted with this caveat in mind.

3 Measuring the Education-Innovation Gap

This section describes the construction of the education-innovation gap. We first explain how we
measure textual similarities between course syllabi and academic publications. Then, we define and
construct the gap using measures of similarity, implementing a series of adjustments to better cap-
ture each syllabus’s content. Lastly, we validate our measure and describe its variation. Appendix

C provides additional details on the construction of the measure.
3.1 Measuring The Similarity Between Syllabi and Academic Publications

3.1.1 Constructing Term Frequency Vectors

We start by representing each document d (a syllabus or an article) as a term-frequency vector TFg4.

Each element T'Fy,, of TFq4 represents the frequency of term w in d:

Cdw

TFyy = 2
> kew Cdk

where, in the numerator, ¢4, counts the number of times term w appears in d and the denominator

is the total number of terms in d. To maximize our ability to capture the knowledge content of each
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document, we construct TF vectors focusing exclusively on terms related to knowledge concepts
and skills, belonging to a dictionary W with |W| terms (as a result, each term vector contains |IV|
elements). Our primary dictionary is the list of all unique terms ever used as keywords in academic

publications from the beginning of our publication sample until 2019.%°

3.1.2 Adjusting for Term Relevance

When constructing similarity metrics, it is crucial to ensure that each term receives a weight pro-
portional to its importance in capturing a document’s content. Unadjusted TF vectors give more
weight to terms with a higher document frequency. However, terms that are very common across
all documents receive more weight regardless of their ability to capture the content of a given docu-
ment. For example, terms such as “Programming” or “Animals”—very common among Computer
Science and Biology syllabi, respectively—are usually less informative of content than terms such
as “Natural Language Processing” or “CRISPR.”'¢

To this purpose, we use a leading approach in the text analysis literature called “term-frequency-
inverse-document-frequency” (TFIDF, Kelly et al., 2021). This approach assigns each term a weight
inversely proportional to the frequency of the term across all documents, underweighting terms that
are very common and thus not diagnostic of a document’s content. We implement this approach by

constructing an inverse-document frequency vector IDF (of length |IW|) with elements defined as

IDF, =1In < Dl ) ,
> nep Lenw > 0)

where D is the set of all documents (syllabi and articles). The denominator in parentheses is the
total number of documents that contain word w. I DF,, is thus the inverse of the share of all docu-
ments containing word w. Using IDF, we can then transform TFy into a term-frequency-inverse-

document-frequency vector TFIDF 4, with elements equal to

TFIDFEy, = TFy, x IDE,. (1)

Accounting for changes in term relevance over time The generic TFIDF approach discussed

above calculates the relative importance of each term for a given document pooling together doc-

>We have also used the list of all terms that have an English Wikipedia webpage as of 2019. Our results are robust to
this choice.

!6Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a family of DNA sequences found in the
genomes of prokaryotic organisms such as bacteria and archaea. The term also refers to a recent technology that can be
used to edit genes.

15



uments published in different years. This is not ideal for our analysis, because we are interested
in the novelty of the content of a syllabus d relative to research published in the years prior to d.
Consider, for example, course CS229 at Stanford University, taught by Andrew Ng in the early
2000s and one of the first that entirely focused on Machine Learning. The term “machine learning”
has become very popular in later years, so its frequency across all documents is very high and its
IDF,, very low. Pooling together documents from different years would thus result in a very low
TFIDFy, for the term “machine learning” in the course’s syllabus, failing to recognize the course’s
novelty as of early 2000s. Generally, not accounting for changes in term frequency over time would
lead us to severely mischaracterize a course’s path-breaking content.

To overcome this issue, we modify the traditional TFIDF and construct a retrospective or
“point-in-time” version of IDF, meant to capture the inverse frequency of a term among all doc-
uments published prior to d. We call this vector “backward-IDF,” or BIDFy. It is indexed by ¢
because it varies over time. We define the set of documents published prior to ¢ as D;; the elements

of BIDF; can be defined as

| Dy | >
BIDF,, =1In .
fw (zneDt 1(cpw > 0)

The use of this weighting approach allows us to give a temporally appropriate weight to each term
in a document. Using BIDF, we can then calculate a “backward” version of TFIDF g—called

TFBIDF g—whose elements are
TFB[DFdw = TFdw X BIDFt(d)w, (2)

where ¢(d) is the publication year of document d.

3.1.3 Building Textual Similarities Between Syllabi and Articles

Armed with weighted term vectors, we can now construct measures of textual similarities between
syllabi and articles. For simplicity, we denote TFBIDF 4 as V4 for each d. The measure of similarity
we use is the cosine similarity, defined for two documents d and d’ as

N Vd Vd’
IVall IVal

)

Pd,d

where ||V4]| is the Euclidean norm of V4. Since each element of V4 is non-negative, p lies in the

interval [0, 1]. If d and d’ use the exact same set of terms with the same frequency, pq s = 1; if they
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have no terms in common, pg 4 = 0.

3.2 Calculating the Education-Innovation Gap

We capture the similarity between each syllabus d and different vintages of knowledge using the
average similarity of d with all the articles published in a three-year time period ending 7 years

before the syllabus year t(d):
ST _ ZnEQT(d) Pdn
! €2 (d))|
where pgj, is the cosine similarity between syllabus d and an article k, 2, (d) is the set of all articles
published in the three-year time interval [t(d) — 7 — 1,t(d) — 7 + 1], and |Q,(d)| is the total number
of these articles.!”

We construct the education-innovation gap as the ratio between the average similarity of a syl-

labus with older technologies (published in the interval [t(d) — 7 — 1, t(d) — 7+ 1]) and the similarity

with more recent ones (published in [t(d) — 7" — 1,¢(d) — 7/ + 1], where 7" < 7):

Gapg = 100 * (Sd,> 4)
Si

Given this definition, the syllabus of a course taught in ¢ has a lower education-innovation gap if its
text is more similar to more recent research (published in [t(d) — 7/ — 1,t(d) — 7’ + 1]) than to older
research (published in [t(d) — 7" — 1,t(d) — 7" + 1]). We multiply the ratio by 100 for readability.

In order to implement the measure in (4), we need to determine the appropriate 7 and 7/, the
parameters that define the timing of the old and new knowledge vintages. We choose them to be
tield-specific, to accommodate the fact that knowledge production may be a faster process in some
fields (in which case 7 and 7’ are both small) than in others (in which case 7 and 7’ will both be
large). To choose the appropriate 7 and 7/, we look at the distribution of the age of citations in each
field’s publications. Specifically, we select each field’s 7 and 7’ to be the 90th and 5th percentiles of
citation lags across all the articles in that same field. The median 5th percentile of the citation lag,
meant to capture recent knowledge vintages, is 2 years. The 90th percentile, which captures older
vintages, has a median of 16 and ranges between 12 years for Medicine and Nursing and 36 years
for Religion. Field-specific lags are shown in Appendix Figure AVL

Our measure features two attractive properties. First, being constructed as a ratio, the gap is not
affected by syllabus-specific attributes such as style, format, or length, which could introduce noise

when measuring a syllabus’s similarity to knowledge. For example, two courses covering the same

7Our main analysis uses three-year intervals; our results are robust to the use of one-year or two-year intervals.
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materials could have different similarities to research publications if one syllabus is more detailed
or uses more academic terms. Since these stylistic differences would affect both the numerator and
the denominator, the ratio would net them out. We illustrate this point with a simulation exercise
in Appendix C.!8

Second, our measure does not heavily penalize syllabi for covering “classic” topics in the liter-
ature, as long as these are widespread across courses. This is guaranteed by the use of a TFBIDF
approach, which reduces the impact on the gap of terms—such as those pertaining to classics—
frequently used across all documents. For example, the term “Ordinary Least Squares” (“OLS”)
refers to a relatively old but very common concept taught in most econometrics and statistics
courses. As such, it will receive a low weight, and syllabi will not be penalized much by cover-

ing it.
3.3 Validating The Measure and Interpreting Its Magnitude

We perform a series of tests to validate our measure’s ability to capture the distance between the
content of a course and the research frontier. First, we show a positive relationship between the
gap and the average age of its reference list (defined as the average difference between the year
of the syllabus and the publication year of each reference (Figure 1, panel (a)). This correlation is
small in magnitude and equal to 0.11. This is not surprising: Syllabi often only reference a textbook,
whose date of publication is not necessarily informative of content. Notably, the correlation is larger
for graduate-level courses (particularly those in the top decile of the length distribution, equal to
0.17), for which where the reference list is more likely to reflect actual content. In spite of the fact
that the average reference age is easy to calculate, our text-based measure is available for all syllabi
(including those for which the reference list is unavailable) and is more accurate in capturing the
content of courses that only rely on very few bibliographic sources (for example, a textbook).
Second, we show that the gap varies reasonably across course levels. Graduate-level courses and
advanced undergraduate courses have lower gaps than basic undergraduate courses. Controlling
for field-by-year effects, basic undergraduate courses have a gap of 94.4, advanced undergraduate
courses have a gap of 94.0, and graduate courses have a gap of 93.2 (Figure 1, panel (b)). This
confirms the intuition that more advanced courses cover content that is closer to the knowledge

frontier.

"¥We manually create a sample of 1.7 million simulated syllabi, for which we know ex ante the ratio between “old”
knowledge terms (more popular among old publications) and “new” knowledge terms (more popular among recent
publications). In the presence of syllabi idiosyncracies, the education-innovation gap performs significantly better at
recovering a syllabus’s knowledge content (the ex ante ratio between old and new knowledge terms) than a simple
measure of similarity with new terms (Appendix C).
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Figure 1: Validating the Education-Innovation Gap
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Note: Panel (a) shows a binned scatterplot of the education-innovation gap and the average age of a syllabus’s references
(required or recommended readings), in which reference age is calculated as the difference between the year of the
syllabus and the year of publication of each reference. Panel (b) shows the mean and 95-percent confidence intervals of
the gap by course level, controlling for field-by-year effects.

Third, we use a simulation exercise to confirm that our measure is able to capture even small
changes in a syllabus’s coverage of different knowledge vintages. We first randomly draw a sub-
sample of 100,000 syllabi. In these syllabi, we progressively replace terms that are more frequent
in older knowledge vintages (“old words”) with terms more frequent in newer vintages (“new
words”), and we re-calculate the gap as we replace more words. Old words are either (a) in the
top 5 percent in terms of frequency in the old publication corpus (betweent — 7 —1land ¢t — 7 + 1),
or (b) in the old publication corpus but not in the new publication corpus (between ¢t — 7" — 1 and
t — 7' + 1), where t is the year of the syllabus and 7 and 7’ are field-specific and constructed as in
Section 3.2). New words are defined in a symmetric way, as either (a) in the top 5 percent in terms
of frequency in the new publication corpus, or (b) in the new publication corpus but not in the old
publication corpus.

The gap monotonically decreases as we replace more old words with new ones. We show this
in Figure 2, which plots the median change in the education-innovation gap when we replace a
given number of words in the syllabi subsample. This simulation is also useful for gauging the
economic magnitude of changes in the gap. In particular, a unit change in the gap is equivalent to
the replacement of 26 percent of a syllabus’s old words (or 85 old words out of 330 words for the

median syllabus).
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Figure 2: Change in Gap as Old Knowledge Is Replaced With New Knowledge
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Note: Median change in the gap in a simulation exercise based on a random subsample of 100,000 syllabi, in which we
progressively replace “old” knowledge words with “new” knowledge words.

3.4 The Education-Innovation Gap: Variation and Variance Decomposition

The average course has a gap of 93.9, with a standard deviation of 6.9, a 25th percentile of 89.8, and a
75th percentile of 97.7 (Table 1, panel (a) and Appendix Figure AVII). To give an economic meaning
to this variation, we use the relationship illustrated in Figure 2. In order to move a syllabus from
the 75th to the 25th percentile of the distribution (a 7.9 change in the gap), we would have to replace
about 70% of the knowledge content of the median syllabus (330 words).

To better understand what drives variations in the gap, we calculate the contribution to the
total variance of each of the following five attributes: year, field, school, course, and instructor. We
perform this decomposition by means of a Shapley-Owen decomposition (Israeli, 2007; Huettner
etal., 2012).

The method proceeds in three steps. We first estimate OLS regressions of the gap on fixed effects
for all possible combinations of attributes.!” Second, for each of these regressions, we compute how
much the adjusted R? declines if we exclude the fixed effects for a specific attribute j. Lastly, we
calculate the average decline for each j across all these regressions, which we denote as the partial-
R? of attribute j, or R?. This statistic, which is analogous to the Shapley value used in game theory,

represents the portion of the total variance in the education-innovation gap that can be attributed

¥Since school effects are subsumed by course effects (each course is taught only at one school), school effects are
not separately identified in a regression that also contains course fixed effects. Our method, however, still allows us to
quantify the contribution of school effects to the total variation in the education-innovation gap out of the regressions of
those combinations of the five attributes that do not include course effects.
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to j. Analytically, it is equal to

g= Y =m0y gy - ro)
TSV}

where R?(S9) is the adjusted R? of a regression of the gap on fixed effects for a set of factors S, V is
the set of all attributes considered, |T'| is the number of attributes in set 7', and K = |V| = 5 is the
total number of attributes considered. The use of adjusted R? accounts for the fact that the various
sets of fixed effects have different numbers of categories (using the standard R?, larger categories

would mechanically explain a larger portion of the variance).”’

Table 3: Decomposing the Variation in the Gap: Schools, Years, Fields, Courses, and Instructors

Partial R?

Variable (1) (2) 3) 4) (5) (6)
Instructor 0.364 - 0.251 0.347 0.248 0.342
Field 0.072 0.121 0.045 0.066 - -
Year 0.101 0.115 0.094 0.097 - -
School - 0.036 0.016 0.021 0.016 0.022
Course - - 0.355 - 0.353 -
Course level - - - 0.008 - 0.008
Field-by-year - - - - 0.161 0.188
All 0.537 0.271 0.760 0.538 0.779 0.560

Note: This table shows a Shapley-Owen decomposition of the adjusted R? of a regression of the education-innovation
gap into the contribution of each set of fixed effects. The detailed method of the decomposition is described in detail in
Section 3.4. All reports the adjusted R? of a regression with all sets of fixed effects included. We use adjusted R? in lieu
of R? to account for the large number of fixed effects.

The results of this decomposition exercise are shown in Table 3. A large portion of the variation
in the education-innovation gap is attributable to instructors. For example, when we use instruc-
tor, field, and year effects (column 1), instructors explain 36 percent of the total variance (Table 3,
column 1). When we add school and course effects, instructors explain 25 percent of the variance
(column 3). This implies that there is significant variation in the gap even within the same course

in a school, and this variation is attributable to instructors. Schools, on the other hand, explain a

PWe perform a placebo test to demonstrate that the large variation explained by courses and instructors is not just
an artifact of the large number of categories in these attributes. In this test, we randomly scramble the course codes in
the data. In this way, the number of course indicators remain the same, but scrambled course codes do not bear any
economic meaning. We replicate the Shapley-Owen decomposition shown in column (1) of Table 3. If the large portion
of explained variance were solely driven by the large number of indicators, even scrambled course codes should explain
some variance. Instead, we find that they explain less than 1% of the total variation in the education-innovation gap.
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much smaller share of the total variance, between 2 and 4 percent. Fields also explain a small share,
between 5 and 12 percent. Specifications with course effects show that courses explain about a third
of the overall variance. This indicates significant persistence in the content of a course over time.
In the remainder of the paper, we focus more in-depth on two of these factors: instructors and
schools. Specifically, we explore how the gap relates to the characteristics of the person who teaches
the course, and we study how it varies across schools with different characteristics and serving

different populations of students.

4 Course Instructors and The Education-Innovation Gap

Instructors are considered one of the most important and costly inputs for the production of student
learning in schools (De Vlieger, Jacob, and Stange, 2020). In line with this, our variance decompo-
sition shows that a significant part of the overall variation in the education-innovation gap can be
attributed to instructors. Motivated by these findings, we now investigate the role of instructors in

shaping the education-innovation gap.

4.1 Event Study: The Education-Innovation Gap When Instructors Change

We first study how the education-innovation gap of a course varies when the course instructor
changes. This allows us to measure the direct role of instructors in shaping course content. We

estimate an event study of the gap in a ten-year window around the time of an instructor change:

5

Gap, = Y Opl(t—To=k) + e+ + (5)

k=—4

where cand ¢ denote a course and year, respectively. The subscript c denotes a specific course within
each school (for example, Econ 110 at Yale University). Gap.: measures the education-innovation
gap of course c in t. T, represents the first year in our sample in which the instructor of course c
changes.”! We set the indicator function to zero for all courses without an instructor change, which
serves as the comparison group. We cluster standard errors at the course level. After normalizing
d_1 to be 0, the parameters §;, capture the differences between the gap k years after an instructor
change relative to the year preceding the change. To the extent that changes in instructors are un-
related to other unobservable determinants of course content, these estimates represent the causal

effect of a new instructor on the education-innovation gap.

2In our data, some courses feature more than one instructor change over time. To better isolate the effect of each
change, we restrict our attention to courses taught by only one instructor in each year and with at most three changes
over the sample period. Our results are robust to this choice.
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Figure 3: Event Study: The Education-Innovation Gap Around An Instructor Change

Education-innovation gap

-4 -3 -2 -1 0 1 2 3 4 5
Time to instructor change

Notes: Estimates and confidence intervals of the parameters d; in equation (5), representing an event study of the
education-innovation gap around an instructor change and controlling for course and year fixed effects. Observations
are at the course-by-year level; we focus on courses taught by one instructor per year and with at most three episodes of
instructor changes. Standard errors clustered at the course level.

Figure 3 shows that OLS estimates of ¢;, are indistinguishable from zero and on a flat trend in
the years leading to an instructor change. Following the change, however, the education-innovation
gap immediately declines by about 0.2. To quantify the economic magnitude of these differences,
we use the simulation results in Figure 2. The simulation results indicate that this decline is equiv-
alent to updating 34 words in the median syllabus, or approximately 10 percent of its content. The
decline is robust to the presence of plausible deviations from the standard parallel trends assump-
tion of event studies (Rambachan and Roth, 2019) and to the possibility that instructor effects differ
depending on the year in which they occurred (Sun and Abraham, 2021) (Appendix Figures AIX
and AVIII).?

In Table 4 we re-estimate equation (5) for different subsamples of syllabi, pooling together years

preceding and following an instructor change. The variable After change equals one in years fol-

2In Appendix Figure AIX we test the robustness of the statistical significance of dg in equation (5), by implementing
the test proposed by (Rambachan and Roth, 2019). Estimates of do remain distinguishable from zero even under plausible
violations of the parallel trends assumption, which indicates that the measured decline in the gap is not due to differential
trends.
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lowing the change. After an instructor change, the gap declines for all fields and course levels by
0.134 on average (8 percent of a course’s content, column 1, significant at 1 percent). The decline is
largest for STEM and Social Science courses (—0.20 and —0.16, columns 4 and 5, respectively) and
for graduate courses compared with undergraduate (-0.19, column 8).

These results show that instructors play an active role in determining the education-innovation
gap. New instructors who take over a course significantly update its content, bringing it closer to
the knowledge frontier; this is especially true for instructors of advanced courses. A flat trend prior
to the change suggests that course updating is not a gradual process taking place over time. Rather,

instructors who teach the same course for many years tend to leave content unchanged.

Table 4: The Education-Innovation Gap Around An Instructor Change

Field Course level

All Business Humanities STEM Soc. Sci.  Basic  Advanced Grad

1) (2) 3) “4) (G)) (6) () (8)
After change -0.134*** -0.107 -0.119* -0.195**  -0.156***  -0.076 -0.140%* -0.189***

(0.030) (0.072) (0.065) (0.046) (0.050)  (0.057) (0.054) (0.045)

N (Course * year) 392536 38444 108151 155039 99391 131995 117525 142936
# Courses 129605 12337 36601 46701 32868 45350 36754 47478
Course FE Yes Yes Yes Yes Yes Yes Yes Yes
Field * year FE Yes Yes Yes Yes Yes Yes Yes Yes

Note: OLS estimates. Observations are at the course-by-year level; we focus on courses taught by one instructor per year
and with at most three episodes of instructor changes. The dependent variable is the education-innovation gap. The
variable After change is an indicator for years following an instructor change. All specifications control for course and
field-by-year fixed effects. Standard errors in parentheses are clustered at the course level. * < 0.1, ** < 0.05, *** < 0.01.

4.2 The Education-Innovation Gap and Instructors’ Research

Event study estimates suggest an active role for instructors in shaping the education-innovation
gap. Instructors, though, differ among themselves in a number of dimensions, including their im-
pact on student outcomes (Hoffman and Oreopoulos, 2009; Carrell and West, 2010; Braga et al.,
2016; Feld et al., 2020). We now study whether they also differ in the extent to which they incorpo-
rate frontier knowledge in the courses they teach, and whether these differences can be explained
by individual characteristics.

We mainly focus on the relationship between instructors’ research activity and the education-
innovation gap of the courses they teach. This relationship is not clear ex ante. Most instructors

perform both research and teaching activities under time constraints. On the one hand, research
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and teaching compete for the instructor’s time, and the opportunity cost of keeping a course up
to date might be higher for research-active faculty, compared with faculty who do not produce
research and whose primary or sole job is to teach. This would lead research-active instructors to
teach courses with a higher gap. On the other hand, research-active instructors are more familiar
with the knowledge frontier and face a lower cost of keeping a course up to date. This would lead

them to teach courses with a lower gap. We now test which of these two forces prevails.

Research productivity and quality We study the relationship between the education-innovation
gap and the research productivity and quality of the instructor, measured using the number of pub-
lications produced and citations received in the five years prior to the year of the course. Binned
scatterplots, controlling for field-by-course level-by-year fixed effects, display negative and statisti-
cally significant relationships between the gap and various measures of instructor research produc-
tivity (Figure 4). A one-standard deviation (sd) increase in publications (approximately 6.7 addi-
tional publications in the previous five years) is associated with a 0.2 lower gap (an update of about
10 percent of the content of the median syllabus, panel (a)). A one-sd increase in citations (equal
to 191 additional citations in the previous five years) is also associated with a 0.2 lower gap (panel
(b)).

These patterns bear several interpretations. One is that more research-productive instructors
are better informed about frontier knowledge, and thus better able to incorporate it into the course
they teach. An alternative is that schools assign research-productive instructors to courses that are
intended to cover frontier knowledge. To distinguish between these two hypotheses, we estimate
the within-course relationship between the gap and instructors” research productivity, using the

following equation:

Gap,;, = Bar(ctyt + e + Ppe)i(e)t + Eet (6)

where ¢, is a measure of research productivity of instructor k (publications or citations), standard-
ized to have mean zero and variance one within each field across all schools and years. The inclu-
sion of course fixed effects 7, implies that our estimates are obtained by comparing changes in the
gap of the same course across different instructors. Field-by-course level-by-year fixed effects ¢
account for any determinants of the gap specific to courses of a given level belonging to a given field
and year. In this specification, the parameter 8 measures the difference in the education-innovation
gap associated with a one-sd change in instructor publications or citations. To the extent that course-
specific factors, which might drive the allocation of instructors across courses, do not change over

time, 3 should then capture the impact of an instructor’s productivity on the education-innovation
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Figure 4: Instructors’ Research Productivity, Funding, and Fit with the Course and the Education-
Innovation Gap

(a) Publications, Last 5 Years (b) Citations, Last 5 Years
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Notes: Binned scatterplots of the gap (vertical axis) and measures of research productivity, quality, funding, and fit be-
tween the course topic and the research of the instructor. These measures are the number of publications in the last five
years (panel a); the number of citations in the last five years (panel b); the total number of NSF and NIH grants ever
received (panel c); and the fit between the instructor’s research agenda and the course content, calculated as the cosine
similarity between the instructor’s publications and the syllabus of the course with the lowest gap among all courses
on a given topic across schools in each year (panel d). All graphs control for field-by-course level-by-year effects. Slope
coefficients are obtained from linear regressions of the gap on the corresponding variable, controlling for field-by-course
level-by-year effects and clustering standard errors at the course level.

gap of the course they teach.

Estimates of 3, shown in Table 5, indicate that the gap declines when the research productivity
of the course’s instructor increases. A one-sd increase in instructor publications over the previous
five years is associated with a 0.04 decline in the gap (equivalent to updating 4 percent of a course’s
syllabus; Table 5, panel (a), column 1, significant at 1 percent). This relationship is particularly

pronounced for Social Sciences, where the same increase is associated with a 0.07 decline in the gap

26



(5 percent of a course’s syllabus, panel (a), column 5).

We showed before that the presence of frontier knowledge is stronger in graduate-level courses.
The relationship between instructor research productivity and the education-innovation gap is also
stronger for these courses. A one-sd increase in instructor publications is associated with a 0.05
decline in the gap for graduate-level courses (or 5 percent of a course’s syllabus; Table 5, panel (b),
column 1, significant at 1 percent). This relationship is again stronger in the Social Sciences (0.07

decline, column 5) and in STEM (0.06 decline, column 4).

Table 5: The Education-Innovation Gap and Instructors” Research Productivity: Publications and
Citations

All Business Humanities STEM  Soc. Sci.

Panel (a): all courses, publications (1) (2) 3) (4) (5)
publications (sd) -0.035*** -0.004 -0.024 -0.026  -0.065***
(0.012) (0.028) (0.023) (0.026)  (0.019)
N (Course * year) 581723 60940 156899 195266 150719
# Courses 153731 15155 43046 51844 39166
Panel (b): graduate-level courses, publications (1) 2 (3) 4) (5)
publications (sd) -0.048*** -0.023 -0.010 -0.055  -0.070***
(0.017) (0.033) (0.047) (0.036)  (0.024)
N (Course * year) 199735 32562 31329 59844 72798
# Courses 54663 8490 9021 17050 19252
Panel (¢): all courses, citations (1) (2) 3) (4) (5)
citations (sd) -0.017 0.029 -0.004 -0.004  -0.060***
(0.012) (0.025) (0.022) (0.023)  (0.020)
N (Course * year) 581723 60940 156899 195266 150719
# Courses 153731 15155 43046 51844 39166
Panel (d): graduate-level courses, citations (1) 2) (3) 4) (5)
citations (sd) -0.037** 0.019 0.010 -0.062*  -0.067***
(0.016) (0.029) (0.043) (0.034)  (0.025)
N (Course * year) 199735 32562 31329 59844 72798
# Courses 54663 8490 9021 17050 19252
Course FE Yes Yes Yes Yes Yes
Field * course level * year FE Yes Yes Yes Yes Yes

Note: OLS estimates; one observation is a course in a given year. The dependent variable is the education-innovation
gap; the independent variables are counts of publications and citations, standardized within each of 69 fields. Panels (a)
and (c) are estimated on all courses; panels (b) and (d) are estimated on graduate-level courses. All specifications control
for course and field-by-course level-by-year fixed effects. Standard errors in parentheses are clustered at the course level.
*<0.1," <0.05 " <0.01.

In panels (c) and (d) of Table 5 we also test whether instructors whose work receives more cita-
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tions teach courses with a lower gap. A one-sd increase in citations is associated with a 0.02 lower
gap, although imprecisely estimated (panel (c), column 1, p-value equal to 0.15). This relationship is
stronger for graduate-level courses, where the same decline is associated with a 0.04 lower gap (or
3 percent of the median syllabus, panel (d), column 1). The relationship is also stronger for STEM

(0.06 lower gap, column 4) and Social Sciences (0.07 lower gap, column 5).

Research funding To explore an alternative measure of research activity, in Table 6 we use data
on the number of NSF and NIH grants received by each instructor. A binned scatterplot shows a
negative relationship between the gap and the number of NSF and NIH grants (Figure 4, panel (c)).
This relationship is confirmed by estimates that control for course and field-by-course level-by-year
effects. A switch from an instructor who never received a grant to one with at least one grant is as-
sociated with a 0.06 reduction in the gap (column 1, significant at 5 percent). This estimate suggests
that public investments in academic research can yield additional private and social returns in the

form of more updated instruction.?

Fit with the course So far, the evidence supports the hypothesis that research-active instructors are
better informed about the research frontier and thus can incorporate this knowledge into a course’s
content. If this is the case, we should expect the gap to be lower for courses whose topics are more
related to the instructor’s own research. For example, a labor economist should be better equipped

to teach a course on labor economics than a course on industrial organization.

Table 6: The Education-Innovation Gap and Instructors’ Research Resources: NSF/NIH Grants

Field Course level
All Business Human. STEM Soc. Sci.  Basic Adv. Grad
1) () 3) 4) ®) (6) (7) (8)
At least one grant -0.058** -0.002 -0.127**  -0.025 -0.073* -0.063 -0.050 -0.058
(0.024) (0.065) (0.056)  (0.043) (0.039) (0.041) (0.045) (0.040)
N (Course * year) 581723 60940 156899 195266 150719 210121 171867 199735
# Courses 153731 15155 43046 51844 39166 55594 43474 54663
Course FE Yes Yes Yes Yes Yes Yes Yes Yes
Field * course level * year FE Yes Yes Yes Yes Yes Yes Yes Yes

Note: OLS estimates; one observation is a course in a given year. The dependent variable is the education-innovation
gap. The variable At least one grant equals one if the course’s instructor has received at least one NSF or NIH grant. All
specifications control for course and field-by-course level-by-year fixed effects. Standard errors in parentheses are clus-
tered at the course level. * < 0.1, ** < 0.05, *** < 0.01.

We test this hypothesis by constructing a measure of “fit” between the course and the instruc-

BFor a review of the role of grant funding as a tool to promote innovation, see Azoulay and Li (2020).
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tor’s research. This measure is defined as the cosine similarity between the instructor’s research in
the previous five years (captured using the text of their publications) and the most updated course
on the same topic at the same level across all schools. For example, we examine the set of courses
on Introductory Econometrics and test whether an instructor who does research in econometrics
includes more frontier knowledge in the course than one who does research on macroeconomics.?*
Binned scatterplots, obtained controlling for field-by-course level-by-year fixed effects, indicate that
a one-sd increase in fit (equal to 0.1) is associated with a 0.3 lower gap (Figure 4, panel (d)). Esti-
mates of equation (6), obtained using the fit measure as the explanatory variable and controlling
for field-by-course level-by-year fixed effects, indicate that a one-sd higher instructor-course fit is
associated with a 0.09 lower gap, equivalent to a 5 percent update in the median syllabus’s content
(Table 7, significant at 5 percent). This relationship is particularly strong for Humanities, STEM,

and Social Science courses (columns 4 and 5) and for courses at the advanced undergraduate level

(column 7).

Table 7: The Education-Innovation Gap and the Fit Between Instructors” Research and Course Con-
tent

Field Course level
All Business Human. STEM Soc. Sci.  Basic Adv. Grad
1 (2) 3) 4) &) (6) ) 8)
Fit w/top course (sd) -0.088**  0.279** -0.184  -0.110* -0.115 -0.051 -0.149* -0.054
(0.044) (0.113) (0.234) (0.059) (0.074) (0.093) (0.086) (0.063)
N (Course * year) 54591 3293 2270 35814 12626 16743 16224 21139
# Courses 17077 1040 781 11149 3923 5208 4833 6883
Course FE Yes Yes Yes Yes Yes Yes Yes Yes
Field * course level * year FE Yes Yes Yes Yes Yes Yes Yes Yes

Note: OLS estimates; one observation is a course in a given year. The dependent variable is the education-innovation gap.
The variable Fit w/top course is a measure of fit between the instructor’s research and the content of the course, defined as
the cosine similarity between the instructor’s research in the previous five years and the content of the course with the
smallest education-innovation gap among all courses with the same topic across all schools. All specifications control for
course and field-by-course level-by-year fixed effects. Standard errors in parentheses are clustered at the course level.
*<0.1,™ <0.05, " <0.01.

Ladder vs non-ladder faculty These results presented so far carry implications for how the education-
innovation gap may vary across faculty ranks and tracks (tenure-track vs. non-tenure-track), due

to differences in their research activities. Ladder (i.e., tenure-track or tenured) faculty are gener-

2 An attractive property of this measure is that it does not uniquely reflect the instructor’s own syllabus; rather, it
aims to capture the content of all courses on the same narrowly defined topic. To construct this measure, we obtained a
unique identifier for courses in the same field or topic (e.g., Machine Learning) across schools. Appendix B describes the
procedure used to construct these categories.
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ally more focused on research compared with non-ladder faculty, whose primary job is to teach.
In recent years, universities have started to increasingly rely on non-ladder faculty to meet a rapid
rise in enrollment (Goolsbee and Syverson, 2019).>> Ex ante, one could argue that—by virtue of
being specialized in teaching—mnon-ladder faculty might be better at keeping educational content

updated.

Figure 5: Gap by Job Titles
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Notes: Mean education-innovation gap by job title, along with 95-percent confidence intervals. Means are obtained as
OLS coefficients from a regression of the gap on indicators for the job title of the instructor and field-by-course level-by-
year fixed effects. Estimates are obtained by pooling data for multiple years. Standard errors are clustered at the school
level.

We compare the education-innovation gap across job titles, controlling for field-by-course level-
by-year effects. We find that, among all faculty, tenure-track assistant professors have the lowest
gap at 93.3. Associate professors have a slightly smaller gap than full at 93.8, but still significantly
higher than assistant professors. Junior faculty on the tenure track thus appear to teach the courses
with the most updated content.

Non-ladder faculty (such as adjunct professors, lecturers, professors in the practice, and visiting

professors) also have a higher gap than assistant professors, at 93.9 (Figure 5). A 0.6 difference in the

PColleges have monopsony power on tenure-track (but not non-ladder) faculty, as these earn substantially lower
wages and have a much higher elasticity of labor supply. This implies that, when enrollment increases, schools can avoid
increasing wages for tenure-track faculty by hiring more non-ladder faculty (Goolsbee and Syverson, 2019).
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gap between assistant professors and non-ladder faculty is equivalent to 19 percent of a syllabus’s
content. One possible explanation for this finding is that assistant professors are more recently
trained and therefore better updated about frontier knowledge. Furthermore, they often have the
strongest incentives to be active in research. Notably, at 93.9 the gap is indistinguishable between
full (tenured) professors and adjuncts.

Taken together, these analyses provide additional evidence that instructors play the most im-
portant role in the creation of course content and the dissemination of frontier knowledge, above
and beyond the roles played by schools and majors (which so far have received most of the atten-
tion from the existing literature). Our findings also suggest that research and teaching are comple-
mentary activities: Research-active instructors are more likely to cover frontier knowledge in their
courses, especially when teaching advanced courses and courses closest in topic to their own re-
search agendas. Proper deployment of faculty across courses can have important impacts on the
content of education, and investments in faculty research (both public, in the form of government
grants, and institution-specific) can generate additional returns in the form of more updated in-

struction.

5 The Education-Innovation Gap Across Schools

So far, we have explored differences in the education-innovation gap across courses within the same
school. Yet, schools differ substantially in terms of resources, organization, the overall education
production function, and the composition of the student body. This can translate into differences in
educational content. For example, if research-active faculty teach courses with a lower gap, schools
with a stronger focus on research could offer courses with a lower gap. Furthermore, since stu-
dents from different socio-economic backgrounds tend to enroll in schools with different attributes
(Chetty et al., 2020), access to low-gap content may also vary across more and less disadvantaged
students.

In this section, we study the relationship between a set of characteristics of the schools and the
students they serve and the education-innovation gap of the course these schools offer. We focus on
three sets of school attributes: (i) institutional characteristics, including sector (public or private),
size, and overall spending and spending on instruction and research; (ii) faculty composition; and
(iii) composition of the student body with respect to test scores and socio-economic background,
captured by the mean SAT score of admitted students and the median parental income of enrolled

students, respectively. Quantifying the differences in the education-innovation gap across schools
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with different characteristics can be helpful to better understand the offering of frontier knowledge
across the US higher education landscape.
We first examine the relationship of the gap with each of these variables one-by-one, by estimat-

ing the following equation:

Gap; = BXsi) + Vraygye) + & (7)

where Gap; measures the education-innovation gap of syllabus i, taught in school s(i) and year
t(i); the variable X is one of the school attributes in school s mentioned above; and field-by-course
level-by-year fixed effects 1), control for systematic differences in the gap, common to all syllabi
in the same field (f) and course level (I), that vary over time (¢). We cluster standard errors at the
institution level. In this equation, the parameter 3 captures the pairwise relationship between the
gap and each school characteristic.

While pairwise relationships are useful, several of the characteristics we are interested in are
correlated with each other. For example, more selective schools on average have higher expendi-
tures and enroll students with higher parental incomes. To account for these correlations, we also
estimate a version of equation (7) in which we include all school characteristics on the right-hand
side. Both sets of results are displayed in Figure 6: Hollow markers denote pairwise estimates and

solid markers denote multivariate estimates. We now describe them in detail.

5.1 Institutional Characteristics: Sector, Size, and Spending

Sector On average, public schools have a 0.2 larger gap compared with private schools, akin to a
10 difference in the content of the median syllabus (Figure 6, hollow series). This difference, how-
ever, becomes indistinguishable from zero when we include all other characteristics in the equation
(Figure 6, solid series). This implies that the observed penalty for public schools can be attributed

to differences in size, resources, faculty, and student composition.

Size US schools vary considerably in size, with 12-month enrollment equal to 2,040 on the 10th
percentile (Hamilton College, NY) and to more than 34,000 on the 90th percentile (Georgia Institute
of Technology, GA). Enrollment size can impact the organization of the instruction, with conse-
quences for the education-innovation gap. The data confirm that larger schools teach courses with
a slightly lower gap. A one-sd larger enrollment is associated with a 0.08 lower gap, equivalent to
a 6 percent update in the median syllabus. This relationship, though, can be explained by other

attributes: It becomes smaller and insignificant when we control for other school characteristics.
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School Spending Schools that spend more on instruction and research teach courses with a lower
gap. A one-sd increase in instructional spending (approximately $65,000) is associated with a 0.14
lower gap, or an 8 percent change in the syllabus; a one-sd increase in research spending (approx-
imately $18,000) is associated with a 0.11 lower gap, or a 7 percent change in the syllabus. These
relationships, though, become small and indistinguishable from zero when we control for all other

school characteristics.

Figure 6: The Education-Innovation Gap and School Characteristics
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Notes: Hollow markers denote OLS point estimates and 95-percent confidence intervals of § in equation (7), i.e., the
slope of the relationship between each reported variable and the education-innovation gap controlling for field-by-course
level-by-year fixed effects; each estimate is obtained from a separate regression. Full marks denote OLS estimates of
a multivariate regression of the gap on all displayed variables, as well as field-by-course level-by-year fixed effects.
All variables on the vertical axis (except for Public) are standardized to have mean 0 and variance 1; each coefficient
represents the change in the gap associated with a one-sd change in each variable. Enrollment, expenditure, and share
minority refer to the year 2018 and are taken from IPEDS. Estimates are obtained by pooling syllabi data for the years
1998 to 2018. Standard errors are clustered at the school level.
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5.2 Faculty Composition and Research

The results of the previous section highlight an important role for instructors in shaping educational
content and show that research-active instructors tend to teach courses with a lower gap. We now
test whether these patterns are confirmed across schools. We estimate the correlation between the
gap and (a) the share of ladder faculty, and (b) the average number of faculty publications.
Estimates of these relationships confirm the relationship between faculty’s research productivity
and the education-innovation gap. A one-sd increase in faculty publications is associated with a 0.5
lower gap, which corresponds to an 18 percent difference in the content of the median syllabus. This
estimate becomes smaller at —0.3 but stays statistically significant even when we control for other
school characteristics. We instead do not find evidence of a relationship between the share of ladder
faculty and the gap: Pairwise and multivariate correlations are small and indistinguishable from
zero. Taken together, these findings are in line with the hypothesis that the research productivity of

instructors is an important determinant of the education-innovation gap.

Share of graduate enrollment Schools that enroll more research-active faculty typically have a
stronger focus on research. This focus is often also reflected in larger graduate programs, such as
Master’s and PhD. Our data confirm that schools with larger graduate programs offer courses with
a lower gap. A one-sd increase in graduate enrollment is associated with a 0.2 lower gap (or a
10 percent change in the median syllabus). This relationship becomes smaller at —0.1, but stays

statistically significant when we control for other school characteristics.?®

5.3 Student Body Characteristics

Socioeconomic background: Parental Income Schools with different characteristics serve differ-
ent populations of students (Chetty et al., 2020). For example, Ivy Plus and Elite schools are dispro-
portionately more likely to enroll students from wealthier families. Cross-school differences could
therefore translate into significant disparities in access to up-to-date knowledge among students
with different backgrounds.

To test whether schools serving students from more advantaged backgrounds offer courses with
a lower gap, we re-estimate equation (7) using the median parental income as the explanatory vari-
able. This variable is constructed using tax returns for the years 1996 to 2004 (Chetty et al., 2020).
The pairwise correlation, shown as a hollow triangle in Figure 6, indicates that courses in schools

serving more economically disadvantaged students on average have a higher gap. Specifically, a

This relationship is not simply driven by the fact that schools with more graduate students offer more graduate-level
courses. A one-sd increase in graduate enrollment is associated with a 0.15 lower gap for undergraduate syllabi.
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one-sd higher median parental income is associated with a 0.2 lower gap, which corresponds to a

10 percent update in the median syllabus.

Students” SAT scores In principle, part of the differences in the gap across schools could be due
to a “vertical differentiation” of educational content across schools based on students” ability and
preparedness. If better-prepared students can absorb frontier knowledge more easily, cross-school
differences in the gap might reflect schools’ efforts to provide students with appropriate educational
content.

To explore this possibility, we test whether schools that admit students with higher SAT or ACT
scores (and therefore tend to be more selective) teach courses with lower gaps. We use each school’s
average SAT score of all students admitted in 2018, standardized to have mean zero and variance
one. The mean 2018 SAT was equal to 1,517 for Yale University, which only admitted 6.3 percent of
its applicants, and 1,027 for Southern Connecticut State University, which admitted 66.3 percent of
all applicants. We assign non-selective schools an average SAT of zero.

Pairwise estimates of the relationship between the gap and student preparedness, obtained es-
timating equation (7) with the average SAT score of admitted students as the only right-hand side
variable, indicate that schools enrolling better-prepared students offer courses with a lower gap. A
one-sd increase in the average SAT score is associated with a 0.11 lower gap, corresponding to a 7
percent difference in the content of the median syllabus (Figure 6, hollow marks). However, this re-
lationship becomes indistinguishable from zero when we control for the other school characteristics
(Figure 6, full marks).

Importantly, the relationship between median parental income and the education-innovation
gap highlighted above remains negative and significant when we control for all other school char-
acteristics, which include SAT scores (Figure 6, full triangle). This finding is in line with existing
evidence on disparities in access to selective schools among more and less advantaged students.
Furthermore, they document a new dimension of inequality: access to educational content that is
close to the research frontier. Importantly, this inequality cannot be explained by differences in
student test scores.

Given this result, one may be left wondering why students from more disadvantaged back-
grounds attend schools offering less cutting-edge content. Answering this question is outside the
scope of this paper. A possible explanation is the lack of information. Disadvantaged students may
be less informed on the type of education provided by each school, which could make them sys-

tematically less likely to choose schools with a lower gap (Hoxby et al., 2013; Hoxby and Turner,
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2015).7

6 The Education-Innovation Gap and Students’ Outcomes

Our findings so far reveal significant differences in access to up-to-date knowledge, both within
and across schools. To the extent that access to frontier knowledge promotes the creation of new
knowledge and human capital, schools that offer courses closer to the knowledge frontiers should
have students who are better able to produce innovation and, generally, more successful in the labor
market.

In this section, we explore the relationship between the gap and two sets of student outcomes:
tirst, measures of students” innovation activities, such as a school’s share of undergraduate students
who complete a doctoral degree and the number of patents produced by students; and second,
education and labor market outcomes, including graduation rates, earnings, and intergenerational
income mobility.

Ideally, one would observe the outcomes of each student and the content of each course they
enrolled in. However, in our data, outcomes are measured at the aggregate level—either at the
school level or at the school-by-cohort level (with the exception of the share of students who attend
graduate school, available separately by macro-field). To match this feature of the data, we follow
the school value-added literature (Deming, 2014) and estimate the school component of the gap

using the following model:

Gap; = bs(:) + Psanciye) T Ei- (8)

In this equation, 65 captures the school component of the education-innovation gap for school s,
accounting for flexible time trends that are specific to the level I and field f of the course. Because
outcome measures refer to students who complete undergraduate programs at each school, we con-
struct s using only undergraduate syllabi; our results are robust to the use of all syllabi. Appendix
Figure AXII shows the distribution of the estimated school-level component, denoted as 6. Its
standard deviation is 0.85, corresponding to a 24 percent change in the average syllabus.

In the remainder of this section, we present estimates of the parameter J in the following equa-
tion:

Y:st = 5és + Xstr + Tt + Est (9)

? A randomized controlled trial that provided students with individualized information about colleges’ net prices,
resources, curricula, students, and outcomes raised students” applications to, admissions at, enrollment, and progress
at selective colleges (Hoxby et al., 2013). The intervention also changed students” knowledge about each school and
decision-making (Hoxby and Turner, 2015).
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where Yj; is the outcome for students who graduated from school s in year ¢; 0, is the school-level
component of the gap (estimated from equation (8) and standardized to have mean zero and vari-
ance one); X i is a vector of school observables; and 7; are year fixed effects. We report bootstrapped
standard errors, clustered at the level of the school, to account for the fact that 6, is an estimated
quantity.

We want to stress that the parameter § does not necessarily capture the causal effect of the gap
on outcomes. Other than by this causal effect, a relationship between 6, and student outcomes
could be driven by differences across schools in their organization and educational quality; in the
ability of instructors; and in the characteristics of students who attend schools with different gaps.
In an effort to control for as many observable differences as possible, we present both uncondi-
tional correlations and correlations obtained controlling for a rich set of school observables. We
include seven groups of controls, including institutional characteristics (private-public, selectivity
tiers, and an interaction between selectivity tiers and an indicator for R1 institutions according to
the Carnegie classification); instructional characteristics (student-to-faculty ratio and the share of
ladder faculty); financials (total expenditure, research expenditure, instructional expenditure, and
salary instructional expenditure per student); enrollment (share of undergraduate and graduate
enrollment, share of white and minority students); selectivity (captured by an indicator for insti-
tutions who admit all of their applicants, the median SAT and ACT scores of admitted students
in 2006, and indicators for schools not using either SAT or ACT in admission); major composition
(share of students with majors in Arts and Humanities, Business, Health, Public and Social Ser-
vice, Social Sciences, STEM, and multi-disciplinary fields); and family background, measured as

the natural logarithm of median parental income.

6.1 Innovation Measures

Invention We begin by studying whether students at schools that offer courses with a lower gap
produce more inventions later in their lives, in the form of patents. We do so by using the total
number of patents received after graduation by students at each school as the dependent variable
in equation (9). Unconditionally, a one-sd lower gap is associated with 24 additional patents at a
given school, or 18 percent compared with an average of 130 patents per school (Table 8, panel (a),
column 1, significant at 10 percent). The relationship remains largely robust when we control for

school observables (Table 8, column 1, panel (b)).

Obtaining a doctoral degree Next, we study the relationship between the gap and the share of

students who later obtain a doctoral degree. We construct this variable using data from the NSF
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Survey of Doctorate Recipients (SDR), separately for five macro-fields: STEM, Health, Business,
Social Science, and Humanities. To match the level of aggregation of this variable, we aggregate
the education-innovation gap at the school-by-macro field level, rather than just at the school level,
and we modify equation (9) so that one observation in our data is a school and by macro-field in a
year. The quantity §; is also estimated separately for each macro field. In column 2 of Table 8 (panel
(a)), we pool data across all macro-fields. The unconditional correlation between the gap and the
share of students who obtain a doctoral degree is negative and statistically significant: A one-sd
lower gap is associated with a 0.37 percentage point higher share, or 14 percent compared with an
average of 2.73 percent. The correlation is particularly strong for Social Science (—0.0108, column 6)
and Health (—0.0077, column 4). These correlations remain remarkably robust when we control for

school characteristics (Table 8, panel (b)).

6.2 Labor Market Outcomes

Graduation rates Next, we examine the relationship between the education-innovation gap and
labor market outcomes. We begin with graduation rates, an outcome that immediately precedes
entry into the labor market. Graduation is in part also a function of choices made by the students,
which could be impacted by the content of the courses they took.

Column 1 of Table 9 shows the relationship between the gap (measured in standard deviations)
and graduation rates. An estimate of —0.05 in panel (a), significant at 1 percent, indicates that a
one-sd decline in the gap is associated with a 5 percentage point higher graduation rate. Compared
with an average of 59 percent, this corresponds to an 8 percent increase in graduation rates.

The estimate of § declines as we control for observable school characteristics, suggesting that
part of this correlation can be explained by other differences across schools. However, it remains
negative and significant at —0.008, indicating that a one-sd reduction in the gap is associated with
a 1.3 percent increase in graduation rates (panel (b), column 1, significant at 5 percent).

Students’ income and intergenerational mobility We next examine the relationship between the
education-innovation gap and students” economic success after they leave college. In columns 2-8
of Table 9 we estimate the relationship between the gap and various income statistics.

Column 2 shows estimates of the correlation between the gap and the natural logarithm of
median student earnings 10 years after graduation, from the College Scorecard. Controlling for
the full set of observables, we show that a one-sd lower gap is associated with 0.7 percent higher
earnings (column 2, panel (b), significant at 5 percent). The College Scorecard also reports mean

earnings, separately for all students and for students with parental incomes in the bottom tercile of
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the distribution. Overall, a one-sd lower gap is associated with an increase in mean earnings of 0.6
percent (column 3). For students with parental income in the bottom tercile, it is slightly larger at
1 percent (column 4, panel (b), significant at 5 percent). Exposure to frontier knowledge thus bears
the strongest correlation with the earnings of students from less advantaged backgrounds.
Information on mean student earnings at the school level is also reported by Chetty et al. (2020)
for the graduating cohorts of 2002-04. Unconditional estimates (which omit year effects due to the
cross-sectional structure of the data) indicate that a one-sd decline in the gap is associated with a
7 percent increase in students’ mean earnings (panel (a), column 5, significant at 1 percent). This

estimate is equal to 1.2 percent when we control for institutional characteristics (panel (b), column

Table 8: The Education-Innovation Gap and Innovation Measures: Share of Undergraduate Stu-
dents Who Obtain a Doctoral Degree and Total Number of Patents

Nr Share of students who obtain a doctoral degree, by field
Patents All STEM Health Business Soc. Sci. Humanities
Panel (a):
no controls (1) (2) 3) (4) (5) 6) (7)
Gap (sd) -23.7275*  -0.0037**  -0.0003  -0.0077** -0.0003 -0.0108*** 0.0049
(12.6023) (0.0016) (0.0025) (0.0035) (0.0005) (0.0041) (0.0055)
Mean dep. var.  130.4513 0.0270 0.0461 0.0255 0.0022 0.0340 0.0232
N 1695 62143 13887 8810 12006 13819 13621
Panel (b):
w/ controls (1) 2) (3) 4) (5) 6) (7)
Gap (sd) -18.0227*  -0.0038** 0.0008 -0.0067** -0.0004 -0.0084** 0.0058
(9.4977) (0.0017) (0.0019) (0.0030) (0.0005) (0.0038) (0.0055)
Mean dep. var.  131.8495 0.0273 0.0466 0.0261 0.0022 0.0346 0.0231
N 1595 45770 10225 6453 8862 10188 10042

Note: OLS estimates of the coefficient ¢ in equation (9). In column 1, Gap (sd) is estimated at the school level pooling
data from all fields. In columns 2-7, the variable Gap (sd) is a school-by-macro field-level education-innovation gap (es-
timated as 0,(;) in equation (8), separately for each macro-field), standardized to have mean zero and variance one. In
column 1, the dependent variable is the total number of patents filed by students at each school, from Chetty et al. (2020),
in columns 2-7, it is the share of undergraduate students at each institution-field who eventually complete a doctoral de-
gree (from the NSF Survey of Doctorate Recipients, year 2000). All columns in panel (b) control for sector (private or
public), selectivity tiers, and an interaction between selectivity tiers and an indicator for R1 institutions according to the
Carnegie classification; student-to-faculty ratio and the share of ladder faculty; total expenditure, research expenditure,
instructional expenditure, and salary instructional expenditure per student; the share of undergraduate and graduate en-
rollment and the share of white and minority students; an indicator for institutions with admission share equal to 100,
median SAT and ACT scores of admitted students in 2006, and indicators for schools not using either SAT or ACT in ad-
mission; the share of students with majors in Arts and Humanities, Business, Health, Public and Social Service, Social
Sciences, STEM, and multi-disciplinary fields; and the natural logarithm of parental income. Columns 2-7 control for year
effects. Column 2 also controls for macro-field fixed effects. Bootstrapped standard errors in parentheses are clustered at
the school level. * < 0.1, ** < 0.05, *** < 0.01.
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5, significant at 5 percent). Notably, this correlation is larger than the one we obtain when we use
earnings data from the College Scorecard. This difference is likely due to the age at which earnings
are measured, equal to 24-30 in the College Scorecard (6-10 years after enrolling in college) and 32
in the Chetty et al. (2020) data. The gap is thus more strongly correlated with later-life earnings.

In columns 6 through 8 of Table 9 we investigate the relationship between the gap and the
probability that students” earnings reach the top echelons of the distribution. Estimates with the
full set of controls indicate that a one-sd decline in the gap is associated with a 0.8 percentage
point increase in the probability of reaching the top quintile of the income distribution (2.1 percent,
panel (b), column 6, significant at 1 percent), a 0.5 percentage point increase in the probability of
reaching the top 10 percent (2.3 percent, column 7, significant at 5 percent), and a 0.3 percentage
point increase in the probability of reaching the top 5 percent (2.5 percent, column 8, significant at
10 percent). Taken together, these results indicate a positive relationship between the school-level
education-innovation gap and students’ average and top earnings.

Lastly, in column 9 of Table 9 we study the association between the gap and intergenerational
mobility. The unconditional correlation between these two variables is equal to —0.0282, indicating
that a one-sd lower gap is associated with a 2.8 percentage point increase in intergenerational mo-
bility (9.4 percent, panel (a), column 9, significant at 1 percent). This correlation becomes smaller at

—0.005 when we control for school observables (column 9, panel (b), with a p-value equal to 0.11).

Summary Our findings indicate that students from schools that offer courses with a lower education-
innovation gap produce more innovation and have better academic and economic outcomes, even
accounting for a wide range of observable characteristics. This finding supports several explana-
tions. For example, it could be the case that students with a higher ability or a higher propensity
to innovate self-select into schools with lower gaps. Alternatively, exposure to frontier knowledge
in higher education could be beneficial for students, helping them innovate and thrive in the labor
market.”®> While a formal test of the causal link between the education-innovation gap and stu-
dent outcomes is beyond the scope of this paper, both of these explanations indicate that schools
could benefit from expanding the coverage of frontier knowledge in the courses they offer, either

by attracting better students or by improving students” outcomes.

®This explanation is also in line with the idea that access to frontier knowledge spurs the creation of new knowledge
(Moser and Voena, 2012; Williams, 2013; Galasso and Schankerman, 2015; Iaria et al., 2018).
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7 Alternative Measures of Course Content

The richness of the syllabi data allows us to explore alternative measures to describe a course’s
content. In this section, we propose a few of them and examine the robustness of our results to the
use of these alternative measures.

Probing the robustness of our results to these alternative measures is important because, in spite
of its many desirable properties, our measure of the education-innovation gap has some limitations.
For example, it captures the average distance of content from the knowledge frontier, thus penal-
izing courses that also include old content. This implies that, among two courses that cover the
exact same new content, the one that also covers older knowledge will have a higher gap. Similarly,
among courses with the same gap, it is unable to identify courses with extremely novel content.
Lastly, the gap relies on academic publications to capture the knowledge frontier. In some fields,
such as STEM, frontier knowledge could also be disclosed in other forms, such as patents for new

technologies.

7.1 Presence of old vs new knowledge

The education-innovation gap measures the presence of new content relative to old content.
Consider two syllabi that cover the same amount of frontier research; the first syllabus only contains
this new content, while the second one also contains some old content. Our measure would assign
a larger gap to the second syllabus compared to the first due to the presence of old content, even
though both do an equal job in covering frontier knowledge.

To address this limitation, we construct an alternative metric: the share of new knowledge cov-
ered by a course, defined as the ratio between the number of “new words” in each syllabus and the
number of all new words. New words are defined as knowledge words that are (a) in the top 5 per-
cent of the word frequency among articles published between ¢t — 3 and ¢ — 1 or (b) used in articles
published between ¢t — 3 and ¢ — 1 but not in those published between ¢ — 15 and ¢ — 13. Intuitively,
this measure captures the portion of all new knowledge covered by the course, regardless of the
presence of old knowledge. For clarity, we show our results using one minus the share of covered
new knowledge, which we refer to as the share of non-covered new knowledge. This allows us to work
with a metric that, like the education-innovation gap, is larger when the content of a course is more
distant from frontier knowledge. The correlation between the share of non-covered new knowledge
and the education-innovation gap is 0.22 (Figure 7, panel (a)), and our main results hold if we use

this alternative metric to capture the novelty of a syllabus’s content (see panel (a) of Figure AX for
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Figure 7: The Education-Innovation Gap and Alternative Measures of Novelty: Binned Scatterplots
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Notes: Binned scatterplots of the education-innovation gap and three alternative measures of novelty of each syllabus,
as defined in the text: the percentage of non-covered new knowledge (panel (a)); a “tail measure,” (panel (b)); and the
education-innovation gap calculated using the text of all patents as a benchmark for frontier knowledge (panel (c)).

the correlation with school-level characteristics, panel (a) of Figure AXI for the correlation with in-
structors’ research productivity, and panels (a) and (b) of Table AII for the relationship with student

outcomes).

7.2 Right tail of academic novelty

The education-innovation gap captures the “average” novelty of a syllabus. It is possible for
two syllabi to have the same gap when one of them only covers content from five years prior, while
the other covers mostly material from fifteen years prior but also a small amount of material from
the previous year. To construct a measure that captures the presence of extremely new material in
a syllabus, we proceed as follows. First, we draw 100 “sub-syllabi” from each syllabus, defined as

random subsets of 20 percent of the syllabus’s words, and calculate the corresponding education-
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innovation gap. The gaps of these 100 sub-syllabi form a distribution; we use the 5th percentile
of this distribution for each syllabus as a tail measure of new content.”’ We refer to this as a “tail
measure” of novelty.

The tail measure is positively correlated with the education-innovation gap, with a correlation of
0.59 (Figure 7, panel (b)). All our results hold when we use the tail measure as a metric for syllabus
novelty (see panel (b) of Figure AX for the correlation with school-level characteristics, panel (b)
of Figure AXI for the correlation with instructors’ research productivity, and panels (c) and (d) of

Table AII for the relationship with student outcomes).

7.3 Gap with patents

The education-innovation gap is defined using new academic publications as the frontier of
knowledge. For STEM fields, knowledge advancements are also documented in the form of patents.
To incorporate this information in our analysis, we construct a version of the education-innovation
gap for STEM courses that uses patents in lieu of academic publications. This measure is posi-
tively correlated with the standard education-innovation gap (Figure 7, panel (c)), and our main
results hold when we use the patent-based gap (see panel (c) of Figure AX for the correlation with
school-level characteristics, panel (c) of Figure AXI for the correlation with instructors’ research
productivity, and panels (e) and (f) of Table AII for the relationship with student outcomes).

Taken together, these results indicate that our main conclusions regarding the content of higher-
education courses across schools, and the way the content relates to instructors” characteristics and

student outcomes, are not dependent on the specific way in which we measure up-to-date content.

8 Conclusion

This paper uses the text of HE course syllabi to quantify the distance between the content of each
course and frontier knowledge. Our approach centers around a new measure, the “education-
innovation gap,” defined as the textual similarity between course syllabi and knowledge from older
vintages, relative to newer ones. We construct this measure by applying NLP techniques to the full
text of 1.7 million syllabi and 20 million academic publications. Our empirical approach combines a
large-scale novel data source with textual analysis to shed new light on some key aspects of higher
education.

Using our measure, we document a set of new findings about the dissemination of frontier

knowledge across HE programs. Across and within schools, significant differences exist in the

2Qur results are robust to the use of the top 10 and one percent.
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extent to which frontier knowledge is taught to students. Instructors play the largest role in shaping
the content of the courses they teach. Courses taught by more research-active instructors have lower
gaps. Access to updated knowledge is highly unequal across students from different backgrounds:
Schools that enroll more socio-economically advantaged students offer courses with a lower gap.
The education-innovation gap is strongly correlated with students” innovation and labor-market
outcomes. In schools offering courses with lower gaps, students are more likely to graduate, earn a
PhD, and produce patents. They also earn more once they enter the labor market. Taken together,
our findings indicate that the education-innovation gap can be an important metric for quantifying
how frontier knowledge is produced and disseminated, and they could help shed new light on the
way in which schools and instructors impact students’ lives.

For future research, a careful analysis of the causal impacts of a low-gap education on students’
later life outcomes represents an important and fruitful avenue. The use of novel alternative data,
such as the text of various documents, could open the opportunity for researchers to investigate

questions related to higher education which would otherwise be difficult to study:.
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